

HYDROGEOLOGICAL ASSESSMENT

Mayo Solid Waste Disposal Facility

Submitted to:

Ms. Laura Prentice Senior Program Manager Land Development Unit Community Services, Infrastructure Development Branch PO Box 2703, Main Administration Building Whitehorse, YT Y1A 2C6

Report Number: 1114360073-511-R-Rev0-1200

Distribution:

2 Copies - Yukon Government Community Services

2 Copies - Golder Associates Ltd.

Executive Summary

Golder Associates Ltd. ("Golder") was retained by the Government of Yukon Community Services Infrastructure Branch on September 28, 2011 to complete a groundwater monitoring well network installation and hydrogeological assessment program at up to 20 solid waste facilities located across the Territory. The Mayo Solid Waste Disposal Facility (the "Facility" or "Site") is one of the sites included in the program. A multiphase approach was implemented at each Facility in order to carry out the hydrogeological assessment. The first phase completed for the program was a review of Site-specific requirements and considerations. The second phase was the preparation of a work plan and schedule. The third phase was the development and presentation of a Background Research and Facility Site Assessment Plan. The fourth phase consisted of the drill program tender specification and tender process management. The fifth phase consisted of the installation of a monitoring well network and collection of data on water levels, water quality, and aquifer parameters. The sixth and final phase resulted in a draft of this Hydrogeological Assessment Report, documenting the results of the investigation.

In summary, the information obtained during the Hydrogeological Assessment indicated the following:

- Site Description: The Mayo Solid Waste Disposal Facility is located in the central portion of Yukon, within the Yukon Plateau North Ecological Region, and in the Na-Cho Nyak Dun First Nation's traditional territory, at latitude 63° 37.05" north and longitude 135° 56.10" west. The Site is accessed by a 150 m gravel road north off the Silver Trail Highway approximately 4.2 km northwest of the Village of Mayo. The Facility serves as a domestic solid waste disposal facility for the residents of Mayo, the citizens of the Na-Cho Nyak Dun living outside of the municipal boundaries, as well as other peripheral residents, businesses, contractors, Government agencies, Exploration and Mining Companies. The Facility is not authorized burn household waste; however, untreated brush and wood products are permitted to be burned at the Site. Special wastes that are authorized for storage on-Site include household special waste, waste oil, waste batteries, waste paints, waste solvents and waste fuels.
- <u>Site Topography</u>: The Facility is located within the Stewart River Plateau, which is characterized by rolling uplands with steep slopes leading into U-shaped valleys. The Facility is at an elevation of approximately 533 m (1,750 feet) above sea level and lies within the Mayo and Stewart River watersheds. The regional topography slopes south towards the Stewart River (Energy Mines and Resources Canada, 1985). The Site is located near a topographic high that divides the Stewart River and Mayo River drainages. Topography in the area surrounding the Facility slopes gently to the east and northeast towards the Mayo River.
- Stratigraphy and Hydrogeology:
 - Topography at the Site is dominated by quaternary surficial deposits;
 - Subsurface conditions were investigated with the installation of four monitoring wells, including MA-MW12-01, MA-MW12-02, MA-MW12-03 and MA-MW12-04, which were completed from July 19 to 21, 2012, under the supervision of Golder Associates for the establishment of a monitoring well network at the Site;

i

- The Site stratigraphy was investigated to a maximum depth of 35.4 metres below grade (m bg) in MA-MW12-02, and was found to consist primarily of interbedded sand and silty sand deposits with minor gravel.
- An unconfined aquifer was encountered during the drilling and installation of four monitoring wells at a depth of between 15.8 and 33.5 m bg;
- A series of hydraulic response tests were performed on three of the four monitoring wells. The results of these tests indicate the hydraulic conductivity of the unconfined aquifer underlying the Site ranges from 5 x 10⁻⁶ m/s to 4 x 10⁻⁵ m/s. These values are considered reasonable for sand or silty sand:
- The horizontal hydraulic gradient at the Site was determined, based on Site topography, to be approximately 0.05 m/m, sloping to the northeast;
- Average linear groundwater seepage velocity in the surficial aquifer is estimated to range between approximately 7 x 10⁻⁷ m/s and 6 x 10⁻⁶ m/s (approximately 0.06 to 0.5 metres per day); and
- Level survey precision on the monitoring wells at the Site was insufficient to determine groundwater flow direction and gradient using water level measurements. Therefore, it was not possible at this time to determine if the conditions of a minimum of two downgradient wells and one upgradient well have been met.

Groundwater Chemistry:

- The results of a desktop study and several Site visits indicate that the Yukon Contaminated Sites Regulation (CSR) standards for freshwater aquatic life are applicable to the Site;
- Groundwater samples were collected from monitoring wells MA-MW12-01, MA-MW12-02, MA-MW12-03 and MA-MW12-04 on September 11, 2012, and a surface water sample was collected from a small pond located approximately 2 km southeast of the Facility on September 12, 2012;
- Chemistry in MA-MW12-02 contained detectable levels of sodium and chloride, as well as a higher ratio
 of sulphate to bicarbonate when compared to the rest of the samples, indicating possible influence from
 landfill leachate; and
- Low levels of petroleum hydrocarbons EPHw₁₉₋₃₂ and HEPHw were detected in three of the monitoring well samples. These are not naturally occurring, and are consistent influence by landfill leachate on groundwater underlying the Site. It is possible that the presence of these hydrocarbons may be a result of the drilling method used to install the well.

The following recommendations are made, based on the results of the 2012 hydrogeological assessment presented in this report:

- As required by the Facility's Waste Management Permit, future groundwater monitoring should be conducted twice a year (spring and late summer);
- Monitoring well location, elevation for ground surface, and the elevation of the top of the PVC standpipe (measuring point) should be surveyed for each well by a professional land surveyor prior to the next monitoring event;

- Groundwater quality at the Facility should be re-evaluated following an additional round of groundwater monitoring to determine if there are any potential impacts present from landfill leachate; and
- Since the groundwater flow direction may change seasonally, flow direction should be re-evaluated next spring to affirm whether or not the conditions for one upgradient and two downgradient monitoring wells have been met.

Study Limitations

This report was prepared for the Government of Yukon, Community Services Infrastructure Development Branch.

The inferences concerning the Mayo Solid Waste Disposal Facility contained in this report are based on information obtained during the assessment conducted by Golder personnel, and are based solely on the condition of the property at the time of the Site reconnaissance, installation of monitoring wells, and groundwater monitoring events, supplemented by historical and interview information obtained by Golder, as described in this report.

This report was prepared, based in part, on information obtained from historic information sources. In evaluating the subject Site, Golder has relied in good faith on information provided. We accept no responsibility for deficiency or inaccuracy contained in this report as a result of our reliance on the aforementioned information.

The findings and conclusions documented in this report have been prepared for the specific application to this project, and have been developed in a manner consistent with that level of care normally exercised by environmental professionals currently practicing under similar conditions in the jurisdiction.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

With respect to regulatory compliance issues, regulatory statutes are subject to interpretation. These interpretations may change over time, and should be reviewed.

If new information is discovered during future work, Golder should be requested to re-evaluate the conclusions of this report and to provide amendments, as required, prior to any reliance upon the information presented herein.

Table of Contents

1.0) INTRODUCTION					
	1.1	Background	1			
	1.2	Purpose and Objectives	1			
	1.3	Scope and Sequence of Work	1			
	1.4	Qualifications of Assessors	2			
	1.5	Authorization	3			
2.0		ESCRIPTION AND HISTORY				
	2.1	Site Location				
	2.2	Site History				
3.0		DDOLOGY				
0.0	3.1	Preliminary Hydrogeological Assessment				
	3.1.1	Data Sources				
	3.1.2	Site Inspections				
	3.1.3	Background Geological Information Sources				
	3.1.4	Contaminated Sites Registry				
	3.1.5	Review of Solid Waste Disposal Facility Permit and Waste Management Plan				
	3.1.6	Review of Environment Yukon Information				
	3.2	Field Investigations				
	3.2.1	Scope of Field Investigations				
	3.2.2	Groundwater Monitoring Well Network				
	3.2.3	Monitoring Well Surveying				
	3.2.4	Groundwater Monitoring Event	9			
	3.2.5	Rising Head Hydraulic Response Tests	9			
	3.3	Laboratory Analysis	9			
	3.4	Quality Assurance / Quality Control	10			
	3.5	Application of Applicable Water Quality Standards	11			
4.0	CONCE	EPTUAL HYDROGEOLOGICAL MODEL	.13			
	4.1	Setting	13			

	4.2	Climate	13	
	4.3	Geology and Hydrogeology	14	
	4.3.1	Geological Framework	14	
	4.3.2	Principal Aquifer	14	
	4.4	Groundwater Flow Systems	14	
	4.4.1	Regional Groundwater Flow	14	
	4.4.2	Local Groundwater Flow	14	
	4.5	Hydraulic Response Tests	15	
	4.6	Estimated Linear Groundwater Velocity	15	
	4.7	Potential Contamination of Groundwater and Transport Mechanisms	16	
5.0	GROU	NDWATER IMPACT ASSESSMENT	16	
	5.1	Review of Groundwater Chemistry	16	
	5.2	Interpretation of Groundwater Chemistry	18	
6.0	CONCL	USIONS	19	
7.0	RECOM	MENDATIONS	20	

TABLES

Table 1: Summary of Waste Disposal Facility Permits and Groundwater Monitoring Requirements	6
Table 2: Well Construction Details	8
Table 3: Monitoring Well Locations and Groundwater Elevations September 11, 2012	8
Table 4: Parameters Analyzed in September 2012	10
Table 5: Review of QA/QC Procedures Taken	10
Table 6: Applicable Water Quality Standards	12
Table 7 Aquifer Units Encountered at the Site	14
Table 8: Estimated Hydraulic Conductivity	15
Table 9: Important Groundwater Chemistry Results	16

FIGURES

- Figure 1: Key Plan
- Figure 2: Site Plan and Cross-Section Location
- Figure 3: Regional Surficial Geology
- Figure 4: Cross Section A-A'
- Figure 5: Regional Drainage and Land Zoning
- Figure 6: Monitoring Well Location Map and Groundwater Elevation
- Figure 7: Schoeller Plot
- Figure 8: Piper Plot
- Figure 9: Stiff Diagram

APPENDICES

APPENDIX A

Site Photographs

APPENDIX B

Well Construction Logs

APPENDIX C

Well Development and Sampling Sheets

APPENDIX D

Slug Test Data

APPENDIX E

Analytical Reports and Chain of Custody Forms

1.0 INTRODUCTION

1.1 Background

Golder Associates Ltd. ("Golder") was retained by the Government of Yukon Community Services Infrastructure Branch on September 28, 2011 to complete a groundwater monitoring well network installation and hydrogeological assessment program at up to 20 solid waste facilities located across the Territory. The Mayo Solid Waste Disposal Facility (the "Facility" or the "Site") is one of the sites included in the program. This report presents the findings of our investigation.

These works have been performed in accordance with the approved scope of work detailed in Golder's proposal (P1-1436-0073) dated August 29, 2011, accepted by Yukon Government Community Services on October 7, 2011, and additional works detailed in our letter dated April 26, 2012 and accepted April 30, 2012.

1.2 Purpose and Objectives

A phased approach is typically implemented in order to develop a Site-specific groundwater monitoring program. The following objectives are included in the development of the program:

- Develop a conceptual hydrogeological model of the Site using existing data that identifies potential contaminant source(s), pathways, and receptors;
- Visit the Site to confirm the hydrogeological model, assess Site conditions, and identify monitoring well locations;
- Design a monitoring well network and drilling program;
- Install groundwater monitoring wells in accordance with the plan;
- Sample the groundwater and, if applicable, surface water;
- Analyze the data and identify potential impacts;
- With the new data, re-evaluate the conceptual hydrogeological model and groundwater monitoring program; and
- Provide recommendations, if needed, to further assess potential impacts to groundwater quality.

1.3 Scope and Sequence of Work

The following scope of work was proposed to develop the conceptual hydrogeological model for the Site and installation of a monitoring well network. This work was performed in accordance with the Waste Management Permit (Permit No. 80-006 effective August 11, 2011 to December 31, 2011), relevant Environment Yukon Protocols, and in accordance with the Yukon Environmental and Socioeconomic Assessment Act (YESAA) Decision Document issued for the Site (Document Number 2011-0290-30-1).

In summary, the work completed at the Facility included the following six phases:

- Phase 1 assessed the needs for special considerations at the Site;
- Phase 2 outlined a work plan and schedule;
- Phase 3 consisted of background research;
- Phase 4 consisted of the drill program tender specification and tender process management;
- Phase 5 consisted of the installation of a monitoring well network and collection of data on water levels, water quality, and aquifer parameters; and
- Phase 6 comprised the preparation of a draft of this Hydrogeological Assessment Report, documenting the results of this investigation.

1.4 Qualifications of Assessors

Project Manager

The role of Project Manager was filled by Gary Hamilton, P. Geo., of Golder's Burnaby, BC office. Mr. Hamilton is a senior contaminant Hydrogeologist and Principal with Golder Associates. He has over 25 years of experience, has completed landfill monitoring projects locally, and is very familiar with Yukon environmental regulations. Mr. Hamilton conducted the initial Site inspections, coordinated the drilling work, and reviewed this assessment report.

Project Director

The role of Project Director was filled by Guy Patrick, P. Eng., of Golder's Victoria, BC office. Mr. Patrick is a senior Hydrogeologist and a Principal with Golder Associates. He is a Professional Engineer registered with the Association of Professional Engineers of the Yukon Territory. Mr. Patrick has over 30 years of experience in the field of environmental and hydrogeological assessments.

Field Hydrogeologist-Engineer

The role of Project Hydrogeologist was filled by Calvin Beebe of Golder's Nelson, BC office. Mr. Beebe has a M.Sc. degree in Hydrogeology from Saint Francis Xavier University (2012). He has completed numerous projects as a Hydrogeologist with Golder Associates including work on contaminated sites, and works with senior personnel on a regular basis.

Mr. Beebe was assisted by Ms. Andrea Badger, who joined Golder in May 2012. She obtained a B.Sc. in Civil Engineering with an Environmental Option, from the University of Alberta, Edmonton (2012) and a Diploma of Northern Studies and Outdoor and Environmental Studies at Yukon College, Whitehorse (2007). She has been involved with monitoring well drilling, development, testing, and sampling at landfills across the Yukon since beginning work at Golder. She has also been involved with surface water monitoring at a construction site in Northern British Columbia.

1.5 Authorization

Written authorization and a signed contract to proceed with the work outlined in our proposal dated August 29, 2011 was received by Ms. Laura Prentice, Program Manager, on October 7, 2011. Golder received e-mail authorization to proceed with additional work detailed in out letter dated April 26, 2012 on April 30, 2012. The Change Order for the work was attached to the e-mail message.

2.0 SITE DESCRIPTION AND HISTORY

2.1 Site Location

The Mayo Solid Waste Disposal Facility is located in the central portion of Yukon, within the Yukon Plateau North Ecological Region, and in the Na-Cho Nyak Dun First Nation's traditional territory, at latitude 63° 37.05" north and longitude 135° 56.10" west. The Site is accessed by a 150 m gravel road north off the Silver Trail Highway, approximately 4.2 km northwest of the Village of Mayo (Figure 1).

2.2 Site History

The landfill was reportedly developed in the early 1980s by the Government of Yukon. Since 1984 the Village of Mayo has been operating the Site. A review of historical aerial photographs for the area indicates that the land was undeveloped prior to its use as a landfill. Historically, waste was segregated into domestic, commercial and demolition waste, and was burned weekly. The accumulated burned waste was buried when required.

3.0 METHODOLOGY

3.1 Preliminary Hydrogeological Assessment

The preliminary hydrogeological assessment involved a desktop review and interpretation of existing information, and an inspection of the Facility. The initial inspection of the Facility was conducted in October 2011, and a follow up inspection was conducted on July 19, 2012. The purpose of the preliminary hydrogeological assessment was to identify the appropriate drilling methods, equipment, and potential well locations for the installation of a monitoring well network. This portion of the work included the following three tasks:

- Compilation and review of available information;
- Assessment and interpretation of available hydrogeological data; and
- Development of a conceptual hydrogeological model.

3.1.1 Data Sources

Data used to complete the hydrogeological assessment was obtained from the following sources:

- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- Environment Canada, Meteorological Service of Canada Last Modified 2012-05-29, Website: http://www.climate.weatheroffice.ec.gc.ca/climate_normals/Canadian Climate Normals or Averages 1971-2000.
- Fetter, C. W., Applied Hydrogeology, Third Edition, PRENTICE HALL, New Jersey. 1994.
- Government of Yukon. Environment Act Contaminated Sites Regulation. O.I.C. 2002/171,
 Schedule 3 Generic Numerical Water Standards.
- Government of Yukon, Yukon Environment, *Protocol for the Contaminated Sites Regulation Under the Environment Act.* 2011.
- Government of Yukon, Yukon Geological Survey, YGS MapMaker Online Website: http://maps.gov.yk.ca/imf.jsp?site=YGS
- Government of Yukon, Yukon Mining and Lands Viewer Website: http://maps.gov.yk.ca/imf.jsp?site=miningLands
- Government of Yukon, Yukon Water, Water Data Catalogue Website: http://yukonwater.ca/MonitoringYukonWater/WaterDataCatalogue/
- Government of Yukon, Department of Environment, Compiled from The Yukon Water Well Registry Summary of Yukon Water Wells, May 11, 2006- Website: http://www.env.gov.yk.ca/monitoringenvironment/hydrology.php
- Mayo, Village of, Solid Waste Management Plan. Prepared for the Department of Environment. 2003.
- Natural Resources Canada, Groundwater Information Network Website: http://ngwd-bdnes.cits.nrcan.gc.ca/service/api_ngwds:gin/en/wmc/aquifermap.html
- Hughes, O. L., 1979. Surficial Geology and Geomorphology, Janet Lake, Yukon Territory, Geological Survey of Canada, Map 4-1982, scale 1:100,000.
- Site inspections of October 19, 2011 and July 19, 2012.
- Surveys and Mapping Branch, Department of Energy, Mines, and Resources. The Atlas of Canada Website: http://atlas.nrcan.gc.ca/site/english/maps/topo/map Map 105 M/12, scale 1:50,000.

3.1.2 Site Inspections

Prior to the Facility reconnaissance, Golder developed a Facility-specific health and safety plan (HASP) for implementation during the field work. The HASP included a description of the potential hazards that could be encountered during the Facility reconnaissance and proposed mitigation. Site inspections were conducted on October 19, 2011 and July 19, 2012. The initial Site visit was conducted to review the layout of the Facility and confirm geological and topographic information obtained from the review of background data.

Proposed monitoring well locations were also reviewed for access constraints. During the second Site visit, the monitoring wells were drilled and installed. Selected photographs of the Facility were taken during the reconnaissance and are presented in Appendix A.

3.1.3 Background Geological Information Sources

Geological information was obtained through a review of topographic and geological maps from the Department of Energy, Mines, and Resources Canada, and through the Canadian Geological Survey. Additional data on the subsurface of the surrounding area was obtained through the online Groundwater Information Network (GIN), provided by Natural Resources Canada (NRCAN), and the Yukon Water Well Registry. A search of the Yukon Water online Data Catalogue did not identify water testing results within the vicinity of the Facility.

3.1.4 Contaminated Sites Registry

On October 10, 2012 Golder contacted Ms. Bethany Peters, an Environmental Protection Analyst with Environment Yukon, to conduct a Contaminated Site Registry search for the Mayo Facility. The search indicated that petroleum hydrocarbon contaminated soil originating from the Stewart River Dike Project was taken to the Mayo landfill in 2007. 280m³ of the approximately 1000 m³ original stockpile was relocated to a land treatment facility, but the remainder of the contaminated stockpile stayed at the landfill. No other contaminated site files or spill reports were located for the Mayo Solid Waste Disposal Facility; however, it was noted that the Facility was largely unmonitored, and that there may have been opportunity for improper disposal and potentially unreported spillage of contaminants during its operation.

3.1.5 Review of Solid Waste Disposal Facility Permit and Waste Management Plan

Waste Management Permit No. 80-006 was issued on August 11, 2012 for the Facility. It states that the Facility is to be closed in compliance with any applicable requirements in federal, territorial, and municipal legislation including the Environment Act and Solid Waste Regulations.

Monitoring requirements set out in Waste Management Permit 80-006 include:

- Monitoring water levels and collecting water samples from groundwater monitoring wells at the Facility twice a year (spring and late summer);
- Sampling of downgradient surface water bodies concurrently with the groundwater sampling;
- Analyze surface water and groundwater samples for the parameters outlined in Section 3.3;

- Analyze water samples at a laboratory that is accredited as conforming to ISO/IEC 17025 by an accrediting body that conforms to ISO/IEC 17011 standards; and
- Submitting monitoring results to Environment Yukon by January 31 each year.

A summary of the Facility permits and groundwater monitoring requirements for the Site are summarized in Table 1 below.

Table 1: Summary of Waste Disposal Facility Permits and Groundwater Monitoring Requirements

Site	Waste Disposal Facility Permit Number	Permit Type	Solid Waste Management Plan	Required Groundwater Monitoring
Mayo Solid Waste Disposal Facility	80-006	Solid Waste; Special Waste; and Air Emissions	Village of Mayo (2003)	Twice Per Year

3.1.6 Review of Environment Yukon Information

Golder reviewed documents pertaining to the Mayo Facility on the Yukon Environment and Socioeconomic Board (YESAB) online registry on November 19, 2012. Documents reviewed included: the most current Waste Facility Permit issued for the Facility, the most current Solid Waste Operation Plan, and the Yukon Environmental and Socioeconomic Act Decision Document.

3.2 Field Investigations

3.2.1 Scope of Field Investigations

The scope of the field investigations included the following:

- Four on-Site monitoring wells were drilled by Midnight Sun Drilling, under the supervision of Golder Associates from July 19 to 21, 2012;
- Monitoring wells were developed and sampled by Golder on September 11, 2012. The water level at each well was measured prior to purging and sampling, and physiochemical parameters were monitored at each well during development and sampling. Groundwater samples were sent to ALS Environmental's laboratory in Whitehorse, YT;
- Slug tests were carried out on all four newly installed monitoring wells to assess horizontal hydraulic conductivity and linear groundwater velocity at the Site; and
- Results of field and laboratory data are summarized and interpreted in this report.

3.2.2 Groundwater Monitoring Well Network

Groundwater monitoring well installation was undertaken in general accordance with Yukon Contaminated Site Regulation Protocol (Yukon Environment, 2011).

Four (4) groundwater monitoring wells were proposed for installation at the Site to characterize groundwater conditions underlying the waste disposal Facility. A Site plan showing the monitoring well locations and key Site features is provided in Figure 2. MA-MW12-04 was intended to characterize upgradient groundwater conditions, while MA-MW12-01, MA-MW12-02, and MA-MW12-03 were intended to assess groundwater conditions downgradient of the landfill. Locations of the monitoring wells (Figure 2) were selected based on aerial photography, review of Site history, Site topography, suspected groundwater flow direction, and a Site inspection.

Specifics for each well are listed below:

- MA-MW12-01 was installed in the southeast corner of the Site, and advanced to a depth of 34.7 m bg;
- MA-MW12-02 was installed in the center of the east edge of the Site, and advanced to a depth of 34.1 m bg;
- MA-MW12-03 was installed on the northeast corner of the Site, and advanced to a depth of 35.4 m bg; and
- MA-MW12-04 was installed on the west edge of the Site, and advanced to a depth of 20.4 m bg.

Wells were installed using a Driltech Marlin 5 truck-mounted air rotary drill rig.

Grab samples of drill cuttings were taken at regular intervals to log the stratigraphy encountered in each borehole. Borehole logs, documenting observed stratigraphy, along with well construction details, are provided in Appendix B. A summary of the stratigraphy and well construction details is provided in Table 2.

Each monitoring well was completed with the top of the well screen installed as close as possible to the interval where the moisture content of the formation appeared to be transitioning from unsaturated to saturated conditions.

Installation details are included on the borehole logs in Appendix B. Typical completion details are:

- Monitoring wells were completed with 50 mm, flush threaded Schedule 40 PVC casing;
- A 3 m long PVC, factory-slotted well screen (10-slot) was installed in all three monitoring wells;
- PVC casing was installed above the well screen to about 0.90 m above grade;

- A silica sand filter pack was used to fill the annulus between the PVC well screen and the borehole wall. The sand pack was extended approximately 1 m above the top of the screened interval;
- A bentonite chip seal, approximately 1 m thick, was placed directly above the sand pack. The remainder of the annulus was filled with bentonite grout;
- Each well was covered with a PVC end-cap, and a lockable steel protective casing was installed to protect
 the wellhead; and
- All wells were developed by removing a minimum of three well volumes using dedicated Waterra[™] tubing and a Hydrolift[™] pump or hand bailer. Development logs are provided in Appendix C.

Table 2: Well Construction Details

Well ID	Drilled Depth (m bg)	Aquifer Unit Monitored	Casing Diameter (mm)	Screened Interval (m bg)	Filter Pack Interval (m bg)
MA-MW12-01	34.7	Silty SAND	50	31.7 – 34.7	30.8 – 34.7
MA-MW12-02	34.1	Silty SAND	50	31.1 – 34.1	30.5 – 34.1
MA-MW12-03	35.4	Silty SAND	50	32.3 – 35.4	29.6 – 35.4
MA-MW12-04	20.4	Silty SAND	50	17.4 – 20.4	16.2 – 20.4

3.2.3 Monitoring Well Surveying

Golder carried out a level survey to determine the vertical elevation to the top of the PVC wellhead (measuring point) for each well on July 21, 2012. Initial absolute elevation was obtained using a Trimble hand-held GPS instrument with a vertical accuracy of \pm 0.6 m. Table 3 presents a summary of survey data and water level measurements (recorded on September 11, 2012). Horizontal position of all wells was obtained by GPS with a precision of \pm 0.5 m or better.

Table 3: Monitoring Well Locations and Groundwater Elevations September 11, 2012

Well ID	UTM Coordinates (Zone 8 North)	Top of PVC Casing Elevation (masl)	Standing Water Level (mbtoc)	Groundwater Elevation (masl)
MA-MW12-01	7054724.7 m N 453609.7 m E	532.85	32.19	500.66
MA-MW12-02	7054778.0 m N 453635.5 m E	533.35	32.08	501.27
MA-MW12-03	7054839.3 m N 453631.5 m E	533.30	31.68	501.62
MA-MW12-04	7054796.4 m N 453523.2 m E	518.10	17.65	500.45

3.2.4 Groundwater Monitoring Event

Golder developed the four monitoring wells on September 11, 2012, Due to logistical constraints these wells could not be developed immediately following installation.

All four wells were purged and sampled on September 11, 2012. The procedure used for sampling followed Contaminated Sites Regulation Protocol No. 7. Prior to purging each well, the water level was first measured with an electronic measuring tape. Approximately five well volumes were then purged from each well, using 5/8 inch high density polyethylene (HDPE) Waterra™ tubing, a foot valve, and a Hydrolift™ pump. During purging, physiochemical parameters (pH, temperature, EC) were collected at regular intervals using a Hanna Instruments HI 991300 meter, and purging was continued until field parameters were stable before sampling. Groundwater development and sampling datasheets are presented in Appendix C. In addition to the four groundwater monitoring wells that were sampled, a surface water sample was collected from the Mayo River, approximately 2 km southeast of the Site.

Sample containers and appropriate preservatives were obtained from ALS's Whitehorse laboratory. Samples for dissolved metals were field filtered using 0.45-micron, in-line filters and preserved with nitric acid. Samples were kept in coolers with ice packs prior to their delivery, and were delivered within appropriate holding times. ALS is certified by the Canadian Association for Laboratory Accreditation, and is accredited as conforming to ISO/IEC 17025.

3.2.5 Rising Head Hydraulic Response Tests

Hydraulic response (slug) tests were performed on September 12, 2012, to assess the hydraulic conductivity of the surficial aquifer underlying the Site. Tests were performed using a 1.0 m long, solid 38 mm diameter PVC slug and a Solinst Levelogger pressure transducer set to measure head fluctuations at one-second intervals. Manual water level measurements were also recorded throughout the tests.

A summary of the analysis of these tests is provided in Section 4.5.

3.3 Laboratory Analysis

Parameters included in the laboratory testing of groundwater samples are summarized in Table 4. The parameter list complies with the Facility's Waste Management Permit (Permit No. 80-006).

Sampling and analysis were undertaken in general accordance with Yukon CSR Protocols 2 and 5 (Government of Yukon, 2011).

Table 4: Parameters Analyzed in September 2012

Sample ID	General Parameters	Nutrients	Dissolved Metals	PAH, BTEX, DOC	VOCs
MA-MW12-01	\checkmark	\checkmark	\checkmark	√	V
MA-MW12-02	√	√	√	√	V
MA-MW12-03	√	√	√	√	√
MA-MW12-04	√	√	√	√	√
Mayo Surface Water	√	√	√	√	√

3.4 Quality Assurance / Quality Control

Table 5 provides a detailed summery of the Quality Assurance (QA) and Quality Control (QC) measures taken by Golder to ensure the accuracy and integrity of groundwater quality sample analysis.

Table 5: Review of QA/QC Procedures Taken

QA/QC Aspect	Evidence and Evaluation					
Data Representativeness						
Sample Integrity	All samples were kept at the appropriate temperature and delivered to the laboratory within the appropriate holding times.					
Background Samples	Groundwater flow direction could not be established due to lack of vertical survey precision of the monitoring well network. Estimated groundwater flow direction based on topography indicates that MA-MW12-04 is upgradient of the Facility.					
Field Procedures	Monitoring wells were purged/developed and sampled using dedicated tubing. Equipment used in sampling more than one well was decontaminated using soap (Alconox [™]) and distilled water. Surface water samples were collected using one-time-use syringes.					
Calibration of Field Equipment	Calibration of field equipment was undertaken daily, prior to sampling wells.					
Data Precision and Accuracy						
Blind Duplicate	One blind duplicate was collected from FA-MW12-04 (Report #1114360073-1100) during the August/September 2012 groundwater monitoring event. Of the 110 analyte pairs tested, RPD values could not be calculated for 89 of the pairs, as both values in each pair were below the laboratory method detection limit (MDL). Of the remaining analyte pairs tested, 1 exceeded the RPD acceptance criteria of ±30% and only 2 were above 5%.					
Trip Blanks	A trip blank was not collected during the August 2012 groundwater monitoring event.					

QA/QC Aspect	Evidence and Evaluation		
Laboratory Internal QA/QC	Laboratory QA/QC is detailed in the primary laboratory report (Appendix E). Overall, the lab report showed acceptable testing frequency and acceptable results for the method blanks, laboratory duplicates and matrix spikes.		
Holding Times	Samples were delivered outside the acceptable (24 hour) hold time for physical parameters; however, field parameters were taken during sample collection to compensate. Laboratory analysis for Volatile Organic Carbons took place one day outside the recommended three day hold time.		
Laboratory Detection Limit	Laboratory reports indicate that detection limits were below the standards applicable to this assessment.		
Completeness of test program	Wells were sampled in accordance with the Site Assessment and Work Plan criteria.		
Validity of Data Set	The data quality review indicates no significant systematic errors in the data collection or analysis process for groundwater. The results of laboratory internal QA/QC and analysis of blind duplicates were acceptable, and therefore, the data set is considered valid and complete for use as the basis for groundwater assessment.		

3.5 Application of Applicable Water Quality Standards

In accordance with the Government of Yukon's solid waste facility monitoring requirements, groundwater wells and a downgradient surface water receptor were sampled and tested for the following parameters:

Major ions (Ca, Mg, Na, K, Cl,		Bicarbonate	Chemical oxygen demand
SO ₄ , N, NO ₂ , NO ₃ and P)		рН	Total Kjeldahl Nitrogen
Dissolved Metals		Total dissolved solids	EPH _{w10-32} & VH _{w6-10}
Mercury		Ammonia	BTEX
Hardness		Dissolved organic carbon	PAHs
Alkalinity		VOCs	

Groundwater and surface water analytical results were compared to the Yukon CSR water quality standards or to the Canadian Environmental Quality Guidelines for constituents where no Yukon standards were available.

The four types of water uses outlined in the CSR, the relevant water quality standards, and their applicability to this assessment are presented in Table 6.

Carbonate

Table 6: Applicable Water Quality Standards

Water Use	ter Use Applicable Water Quality Standard		Applicability to Assessment
Aquatic Life Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)		1.0	Applicable
Drinking Water	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable
Irrigation	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable
Livestock	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable

The following discusses the applicability of each water quality standard to the Facility.

Aquatic Life

A search of the Yukon LandsViewer website and Google Earth images from 2012, conducted by Golder November 20, 2012, showed that the Mayo River falls within a 1 km radius of the Site under which aquatic life standards are applied, as specified in the CSR. It was therefore determined that aquatic life standards were **applicable** for the Mayo Facility.

Drinking Water

A search of drinking water wells on the Groundwater Information Network website and the Yukon Water Data Catalogue (accessed November 20, 2012) showed no drinking water wells located along the predicted downgradient direction between the Site and the Mayo River, nor in any other area within a 1.5 km radius of the Site. It was deemed that CSR drinking water standards were **not applicable** for the Mayo Facility.

Irrigation

A review of the Summary of Yukon Water Wells, compiled from The Yukon Water Well Registry, reviewed by Golder on November 20, 2012, showed no irrigation wells on record for the Mayo area. It should be noted that this is not a complete record of all wells in the Yukon, and it is possible that there are irrigation wells in the area. A review of Google Earth Images from 2012, conducted by Golder on November 20, 2012, as well as several visits to the Facility conducted in July and September 2012 showed no agricultural land within 1.5 km of the Facility. It was therefore considered that CSR water quality standards for irrigation are **not applicable** to the Mayo Facility.

Livestock

A review of the Summary of Yukon Water Wells, compiled from The Yukon Water Well Registry, reviewed by Golder on November 20, 2012, showed no wells on record as being for livestock use in the Mayo area. It was therefore considered that CSR standards for livestock are **not applicable** to the Facility. It should be noted that this is not a complete record of all wells in the Yukon and that it is possible that livestock facilities exist in the area.

4.0 CONCEPTUAL HYDROGEOLOGICAL MODEL

4.1 Setting

The Facility is at an elevation of approximately 535 m (1,755 feet) above sea level, and lies within the Mayo River and Stewart River watersheds. A cleared area of approximately 24,000 square meters, that is generally flat, is present at the Site. Local topography is characteristic glaciofluvial outwash plain deposits and was found to be gently sloping to the northeast at the Site. The regional hydraulic gradient near the Site is expected to follow the regional topography, which slopes northeast towards the Mayo River.

4.2 Climate

Climate at the Site is likely similar to that at the Mayo Airport climate station (Climate ID 2101700), located approximately 3 kilometres east of the Facility at an elevation of approximately 502 m above sea level. Average monthly precipitation reported at the Mayo Airport station ranges from a low average of 9.2 mm in April to a high average of 54.4 mm in July. The average annual precipitation is approximately 312.9 mm, including 147 cm as snowfall. Temperature ranges from a low average of -25.7°C in January to a high average of 16.0°C in July. (Environment Canada, 2012, Canadian Climate Normals 1971 to 2000).

Annual precipitation is relatively low (approximately 300 mm per year). This suggests that the amount of infiltration of water through buried waste at the Site and into the subsurface soils is relatively low. With a significant portion of the precipitation occurring in the form of snow, and the relatively cold climate, little infiltration would be expected during the winter months. The greatest potential for infiltration of water through the waste is during the spring snow melt; however, a significant portion of the water from snow melt would typically occur as surface runoff during this period.

4.3 Geology and Hydrogeology

4.3.1 Geological Framework

The central Yukon, including the Mayo area, has undergone several episodes of glaciation. During glaciation, sediments such as glacial till, glaciofluvial, and glaciolacustrine sediments were deposited, especially in low elevation areas such as the Stewart River Valley, located downgradient of the Site.

The Mayo area is mapped as being underlain primarily glaciofluvial, alluvial and lacustrine plain sediments of quaternary origin. Ablation till, colluvial glacial debris, morainal deposits, and bedrock exposures are found at higher elevations in the mountains to the north and west of the Site.

Surficial geology maps published by the Yukon Geological Survey (YGS) indicate natural surficial materials at the Site are characteristic of gently sloping glaciofluvial plain deposits. In general, deposits consist of well compacted to non-compacted sediments that are primarily gravel, with some sand, and a thin veneer of silt or fine sand. The thickness of the unconsolidated sediments was estimated to be between 2 and 50 m thick (Hughes, 1979).

4.3.2 Principal Aquifer

As shown in Figure 4, it is inferred that groundwater at the Site occurs in a shallow, unconfined aquifer composed primarily of unconsolidated sand and gravel, with minor silt, and cobbles. For the purpose of this report, this aguifer has been named the Surficial Aquifer (Table 7).

Table 7: Aguifer Units Encountered at the Site

Aquifer Name	Location	Aquifer Type	Comments
Surficial Aquifer	MA-MW12-01 MA-MW12-02 MA-MW12-03 MA-MW12-04	Unconfined; unconsolidated porous media	Silty SANDShallow aquiferUnconfined

4.4 Groundwater Flow Systems

4.4.1 Regional Groundwater Flow

Regional groundwater flow is assumed to follow topographic gradient and to be primarily to the south, discharging to the Stewart River. Shallow groundwater likely discharges first to the Mayo River, before flowing into the Stewart River.

4.4.2 Local Groundwater Flow

The Site is located near a topographic high that divides the Stewart River and Mayo River drainages. Topography in the area surrounding the Facility slopes gently to the east and northeast towards the Mayo River (elevation 520 m amsl). Groundwater flow is inferred to be to the northeast following local topography, with discharge to the Mayo River.

Golder used the groundwater depth data from September 11, 2012 and well survey elevation information collected in July 2012 to calculate the groundwater elevation at each monitoring well. Elevations of TOC for each well were not obtained with sufficient precision to determine the direction of groundwater flow at the Site. The water level measurements and groundwater elevations are presented in Table 3.

The horizontal hydraulic gradient at the Site is estimated, based on topographic gradient, to be a maximum of approximately 0.05 m/m.

4.5 Hydraulic Response Tests

Golder Associates conducted slug tests on three of the four newly installed monitoring wells at the Facility. The slug tests were analyzed using AQTESOLV version 4.5, and the results are included in Appendix D. Table 8 provides a summary of the findings.

Table 8: Estimated Hydraulic Conductivity

Monitoring Well ID	Primary Hydrogeological Unit	Solution Used	Calculated Hydraulic Conductivity (m/s)	
MA-MW12-01	Silty SAND	Bouwer-Rice (1976)	4 x 10 ⁻⁵	
MA-MW12-02	Silty SAND	Bouwer-Rice (1976)	5 x 10 ⁻⁶	
MA-MW12-03	Silty SAND	Bouwer-Rice (1976)	2 x 10 ⁻⁵	

4.6 Estimated Linear Groundwater Velocity

As determined from the slug tests summarized in Table 8, the hydraulic conductivity of the shallow aquifer underlying the Site is ranges between 5×10^{-6} m/s and 4×10^{-5} m/s. The horizontal hydraulic gradient across the Site was assessed, using the monitoring well network, to be approximately 0.05 m/m to the east. A range of reasonable linear groundwater velocities is calculated using the following equation:

$$V = (Ki)/n$$

Where: V: is the groundwater velocity in meters per second (m/s);

K: is the hydraulic conductivity in m/s as determined by slug testing;

i: is the horizontal hydraulic gradient (m/m); and

n: is the porosity which is estimated to be approximately 0.35 (Fetter, 1994) silty SAND.

The resulting groundwater velocity is estimated to be from 7×10^{-7} m/s to 6×10^{-6} m/s and (approximately 0.06 to 0.5 metres per day). Groundwater at the Site may travel faster or slower than these estimates due to inaccuracies, heterogeneities, or seasonal variations in these parameters.

4.7 Potential Contamination of Groundwater and Transport Mechanisms

Potential sources and transport mechanisms of groundwater contamination are evaluated based on the Site history, Site inspections, hydrogeological investigation, and contaminant transport principals. Potential sources include:

- Leachate from present and former domestic waste, commercial waste, metals, wood, construction debris, and any other potential waste disposed of at the Facility. Potential contaminates leaching from these sources include: heavy metals, nutrients (NO₃, NH₃), organic hydrocarbons (Fuels, PAH's, chlorinated hydrocarbons), and salts; and
- Leakage and spillage from on-Site hydrocarbon storage areas.

Transport mechanisms that may act on these sources of contamination and cause potential contamination of downgradient receptors include:

- Percolation of precipitation from the surface, through the unsaturated zone, and into the saturated zone.
- Transport of contaminants within the saturated zone (aquifer) to other downgradient locations.

5.0 GROUNDWATER IMPACT ASSESSMENT

5.1 Review of Groundwater Chemistry

As discussed in section 3.2.4, one round of groundwater monitoring was conducted on the four newly installed monitoring wells at the Mayo Solid Waste Disposal Facility on September 11, 2012 and one surface water sampling location downgradient from the Site on September 12, 2012. Chain of custody forms for the groundwater samples collected, the complete groundwater chemistry results, and QA/QC data can be found in Appendix E. Table 9 summarizes parameters from the groundwater chemistry results, which are used to identify potential leachate contamination.

Table 9: Important Groundwater Chemistry Results

Sample Location	Total Dissolved Solids (mg/L)	Chloride (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	DOC (mg/L)	Sodium (mg/L)
MA-MW12-01	364	<0.50	0.0306	104	1.24	<2.0
MA-MW12-02	4270	5.1	0.420	633	4.09	<2.0
MA-MW12-03	743	<0.50	0.322	54.7	0.92	166.0
MA-MW12-04	1001	<0.50	0.0090	83.7	0.74	<2.0
Surface Water	145	<0.50	<0.0050	29.9	2.77	<2.0

Total Dissolved Solids

Total dissolved solids (TDS) is a measurement of the total amount of dissolved organic and inorganic material contained within a liquid. Elevated TDS can indicate the presence of groundwater contamination caused by, for example, landfill leachate. Typically, major ions that comprise TDS include: NO₃, NH₃, Na, K, Mg, Ca, SO₄, Cl, and HCO₃. Values of TDS in the monitoring well samples ranged from 364 mg/L to 4270 mg/L. Levels in MA-MW12-02 (4270 mg/L) and MA-MW12-04 (1001 mg/L) were higher than normal for naturally occurring groundwater and are consistent with influence from landfill leachate. The remainder of samples were within the normal range for naturally occurring groundwater. The TDS concentration in the surface water sample was slighter lower than the groundwater samples (145 mg/L), as is typically expected for surface water.

Dissolved Organic Carbon

Dissolved organic carbon (DOC) concentrations can be elevated by the presence of leachate originating from decomposed organic matter. Levels associated with landfill leachate can be in the hundreds or thousands of mg/L. DOC levels from all monitoring wells at the Mayo Site were within the normal range for naturally occurring groundwater. The level of DOC detected in the surface water sample (2.77 mg/L) was within the range associated with naturally occurring surface water. DOC concentrations in both groundwater and surface water samples do not show evidence of influence from landfill leachate.

Chloride

Chloride is often used as a tracer for anthropogenic influence on groundwater. Elevated chloride levels are associated with a number of sources including sewage, leachate, and road salting. In the case of landfills, elevated chloride might be expected due to degradation of waste with a high chloride concentration. The level of chloride in the sample taken from MA-MW12-02 was 5.1 mg/L. Chloride levels in the remainder of the samples were below detectable limits. These levels are considered to be in the low end of the range expected in naturally occurring waters.

Ammonia

Ammonia is a typical landfill leachate indicator. Ammonia concentrations in the groundwater samples ranged from 0.0090 mg/L in MA-MW12-04 to 0.420 mg/L in MA-MW12-02. These levels are well below the lowest CSR standard for ammonia, and do not indicate influence from landfill leachate.

Metals

Metals concentrations in surface water and groundwater samples were within the range expected in naturally occurring waters. No metals concentrations exceeded any standards set by the Yukon CSR standards for aquatic life.

Organics

Detectable levels of organic constituents are often a sign of leachate contamination. Samples were analyzed for BTEX, PAH, EPH_{w10-32} & VH_{w6-10}, and chlorinated hydrocarbons. Detectable level of EPH_{w19-32} and HEPHw were above detectable levels in MA-MW12-01, MA-MW12-03, and MA-MW12-04. As these chemicals are not found in naturally occurring groundwater, their presence suggests influence from landfill leachate.

5.2 Interpretation of Groundwater Chemistry

Factors that may affect natural groundwater quality include:

- The source and chemical composition of recharge water;
- The lithological and hydrological properties of the geologic unit;
- The various chemical processes occurring within the geologic unit; and
- The amount of time the water has remained in contact with the geologic unit (residence time).

These factors may affect the type and quantities of dissolved constituents in groundwater. The ionic composition of water can be used to classify the water into ionic types based on the dominant dissolved cation and anion, expressed in milliequivalents per litre (meq/L). These can be compared for different water samples using various types of plots.

The ionic compositions of samples from the Site were compared to identify differences in water chemistry by plotting the meq/L concentrations of the samples on three types of diagrams: a Schoeller plot (Figure 7), a Piper diagram (Figure 8), and a Stiff diagram (Figure 9).

- Schoeller: The Schoeller semi-logarithmic diagram (Figure 7) shows total concentrations of major cations and anions, and may be used to identify different water types. Here, the Schoeller plot indicates that the samples have similar ratios of major ions with different concentrations in each sample. The exception to this is the sample from MA-MW12-02, which is the only sample that contains detectable levels of sodium and chloride.
- Piper: The Piper diagram (Figure 8) is used to compare the ratios of major ions and can be used to identify different water types. The Piper diagram illustrates that most of the samples have similar ratios of major ions, the exception being MA-MW12-02, which is enriched in sulphate and sodium plus potassium compared to the rest of the samples. MA-MW12-02 is classified as Na-Ca-SO₄-HCO₃ type water, while the remainder of samples are classified as Ca-Mg-HCO₃-SO₄ type water.
- Stiff: The stiff diagram allows for differences in groundwater chemistry to be presented and viewed spatially. Here, the stiff diagram shows that dominant MA-MW12-01, MA-MW12-03, MA-MW12-04, and the surface water sample all consist of calcium and bicarbonate. In MA-MW12-02 the dominant ions are sulphate and sodium.

6.0 CONCLUSIONS

The following conclusions are made based on the results of the 2012 hydrogeological assessment:

Stratigraphy and Hydrogeology:

- Topography at the Site is dominated by quaternary surficial deposits;
- Subsurface conditions were investigated with the installation of four monitoring wells, including MA-MW12-01, MA-MW12-02, MA-MW12-03 and MA-MW12-04, which were completed from July 19 to 21, 2012, under the supervision of Golder Associates for the establishment of a monitoring well network at the Site;
- The Site stratigraphy was investigated to a maximum depth of 35.4 metres below grade (m bg) in MA-MW12-02, and was found to consist primarily of interbedded sand and silty sand deposits with minor gravel.
- An unconfined aquifer was encountered during the drilling and installation of four monitoring wells at a depth of between 15.8 and 33.5 m bg;
- A series of hydraulic response tests were performed on three of the four monitoring wells. The results of these tests indicate the hydraulic conductivity of the unconfined aquifer underlying the Site ranges from 5 x 10⁻⁶ m/s to 4 x 10⁻⁵ m/s. These values are considered reasonable for sand or silty sand;
- The horizontal hydraulic gradient at the Site was determined, based on Site topography, to be approximately 0.05 m/m, sloping to the northeast;
- Average linear groundwater seepage velocity in the surficial aquifer is estimated to range between approximately 7 x 10⁻⁷ m/s and 6 x 10⁻⁶ m/s (approximately 0.06 to 0.5 metres per day); and
- Level survey precision on the monitoring wells at the Site was insufficient to determine groundwater flow direction and gradient using water level measurements. Therefore, it was not possible at this time to determine if the conditions of a minimum of two downgradient wells and one upgradient well have been met.

Groundwater Chemistry:

- The results of a desktop study and several Site visits indicate that the Yukon Contaminated Sites Regulation (CSR) standards for freshwater aquatic life are applicable to the Site;
- Groundwater samples were collected from monitoring wells MA-MW12-01, MA-MW12-02, MA-MW12-03 and MA-MW12-04 on September 11, 2012, and a surface water sample was collected from a small pond located approximately 2 km southeast of the Facility on September 12, 2012;
- Chemistry in MA-MW12-02 contained detectable levels of sodium and chloride, as well as a higher ratio
 of sulphate to bicarbonate when compared to the rest of the samples, indicating possible influence from
 landfill leachate; and
- Low levels of petroleum hydrocarbons EPHw₁₉₋₃₂ and HEPHw were detected in three of the monitoring well samples. These are not naturally occurring, and are consistent influence by landfill leachate on groundwater underlying the Site. It is possible that the presence of these hydrocarbons may be a result of the drilling method used to install the well.

7.0 RECOMMENDATIONS

The following recommendations are made based on the results of the hydrogeological assessment presented in this report:

- As required by the Facility's Waste Management Permit, future groundwater monitoring should be conducted twice a year (spring and late summer):
- Monitoring well location, elevation for ground surface, and the elevation of the top of the PVC standpipe (measuring point) should be surveyed for each well by a professional land surveyor prior to the next monitoring event;
- Groundwater quality at the Facility should be revaluated following an additional round of groundwater monitoring to determine if there are any potential impacts present from landfill leachate; and
- Since the groundwater flow direction may change seasonally, flow direction should be re-evaluated next spring to affirm whether or not the conditions for one upgradient and two downgradient monitoring wells have been met.

8.0 CLOSURE

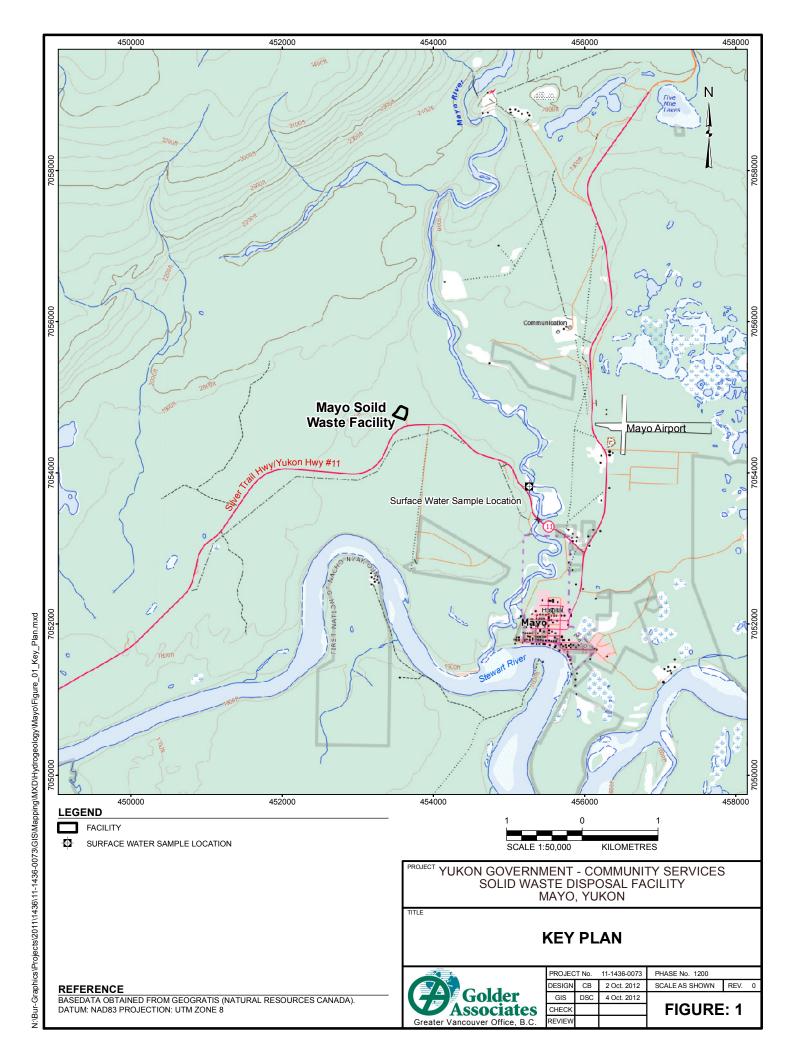
We trust that this draft report is adequate for your current needs. Should you have any questions or require any additional information, please contact the undersigned at your convenience.

GOLDER ASSOCIATES LTD.

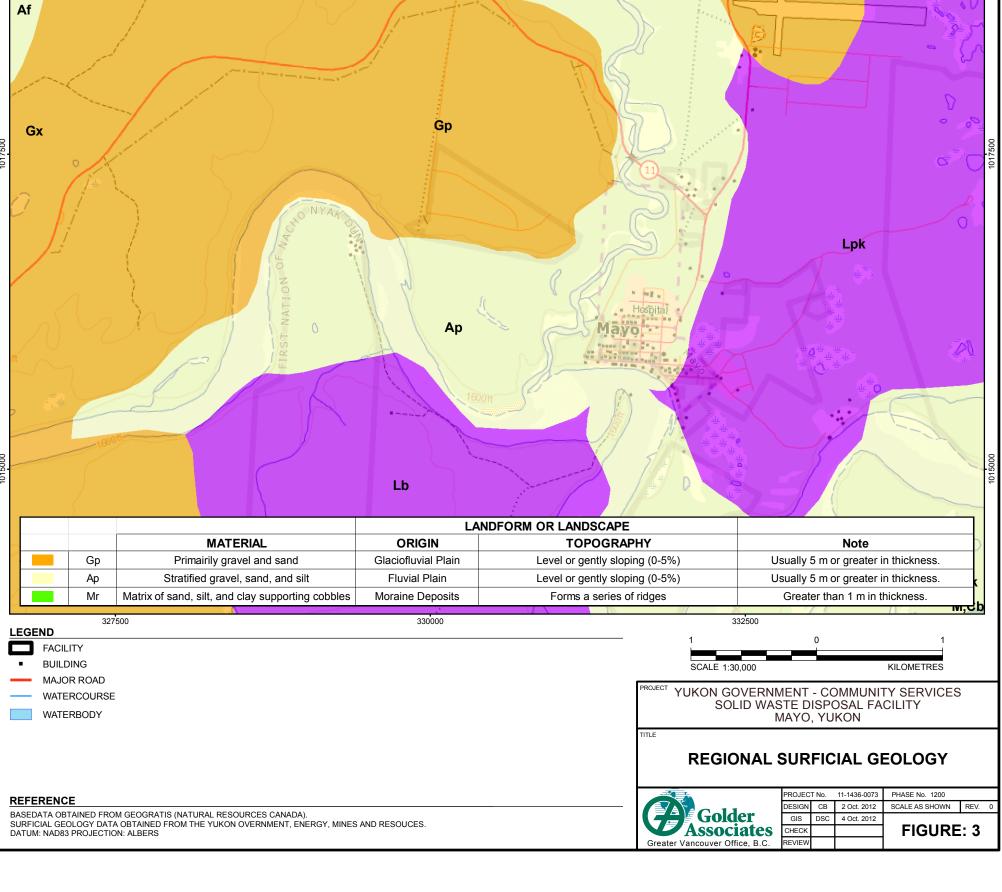
ORIGINAL SIGNED

ORIGINAL SIGNED

Calvin Beebe, M.Sc. Environmental Scientist Gary Hamilton, P. Geo. Principal Hydrogeologist


Reviewed By:

ORIGINAL SIGNED

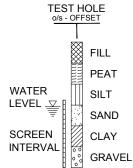

Guy C. Patrick, P.Eng. Principal Senior Hydrogeologist


JT\GJG\GCP\jcc

REVIEW

FROM THAT SHOWN.

Α


NORTHEAST

LEGEND

A'

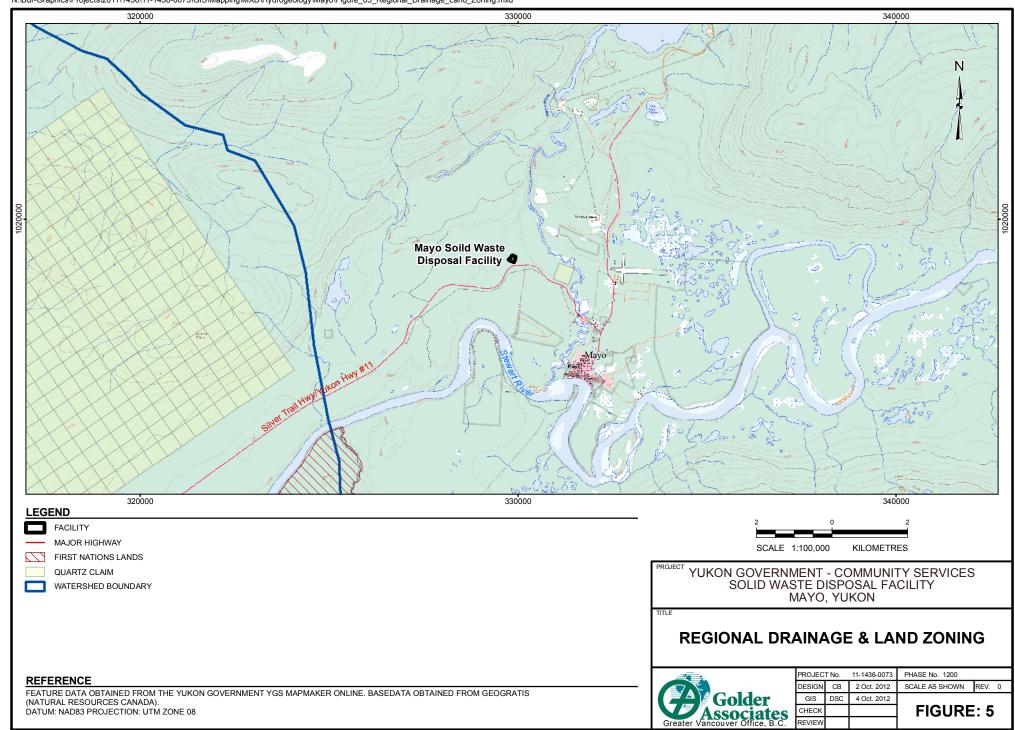
SOUTHWEST

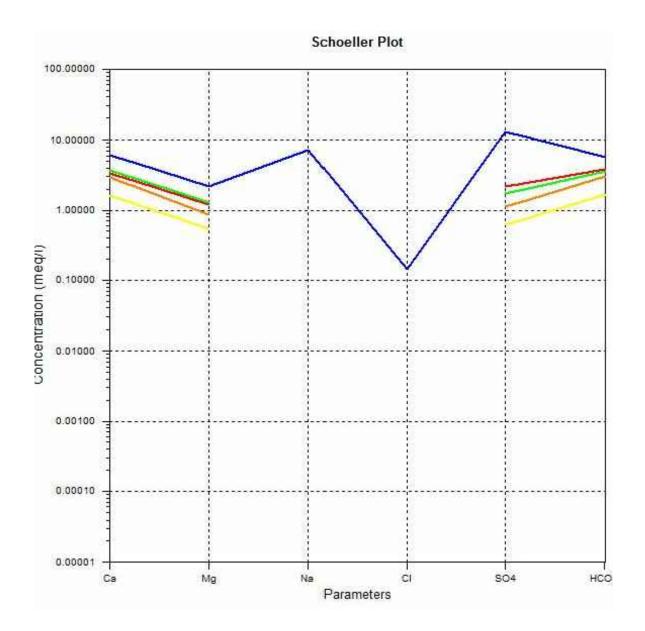
TEST HOLE LOCATION SHOWING INFERRED STRATIGRAPHIC DATA. FOR DETAILED STRATIGRAPHY REFER TO RECORD OF TEST HOLE LOGS IN APPENDIX ?).

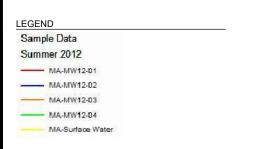
APPROXIMATE GROUND SURFACE

— – ? — INFERRED STRATIGRAPHIC BOUNDARY

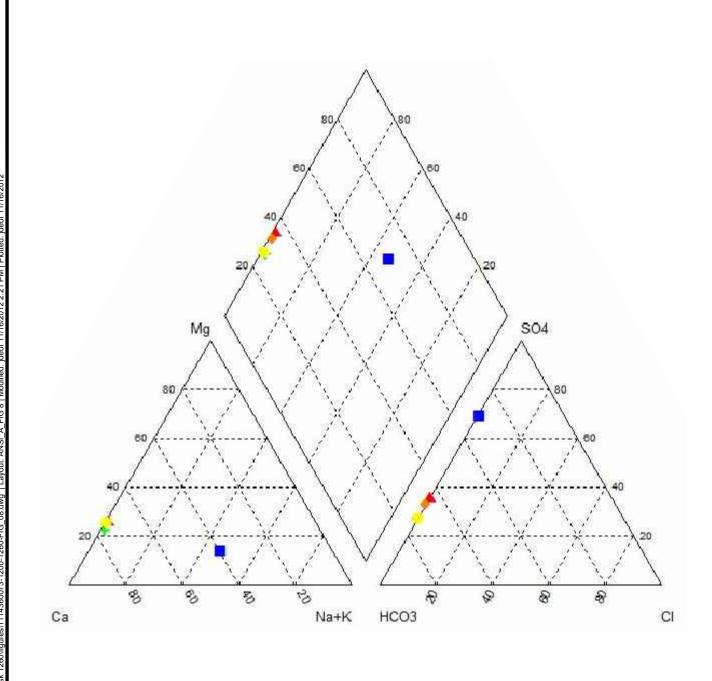
——? —— INFERRED GROUNDWATER (mASL)


0 10 20 30m 1:500 VERTICAL SCALE EXAGGERATION 2.0X


GOVERNMENT OF YUKON,
DEPARTMENT OF COMMUNITY SERVICES
MAYO, Y.T.


CONCEPTUAL HYDROGEOLOGICAL CROSS - SECTION A-A'

PROJECT N	No. 11-1436-0073/1200		FILE No.	1114360073-1200-1260-04
DESIGN	GJH	31DEC12	SCALE	AS SHOWN
CADD	JHL	02JAN13		
CHECK			F	IGURE 4
DEV/IEW/				

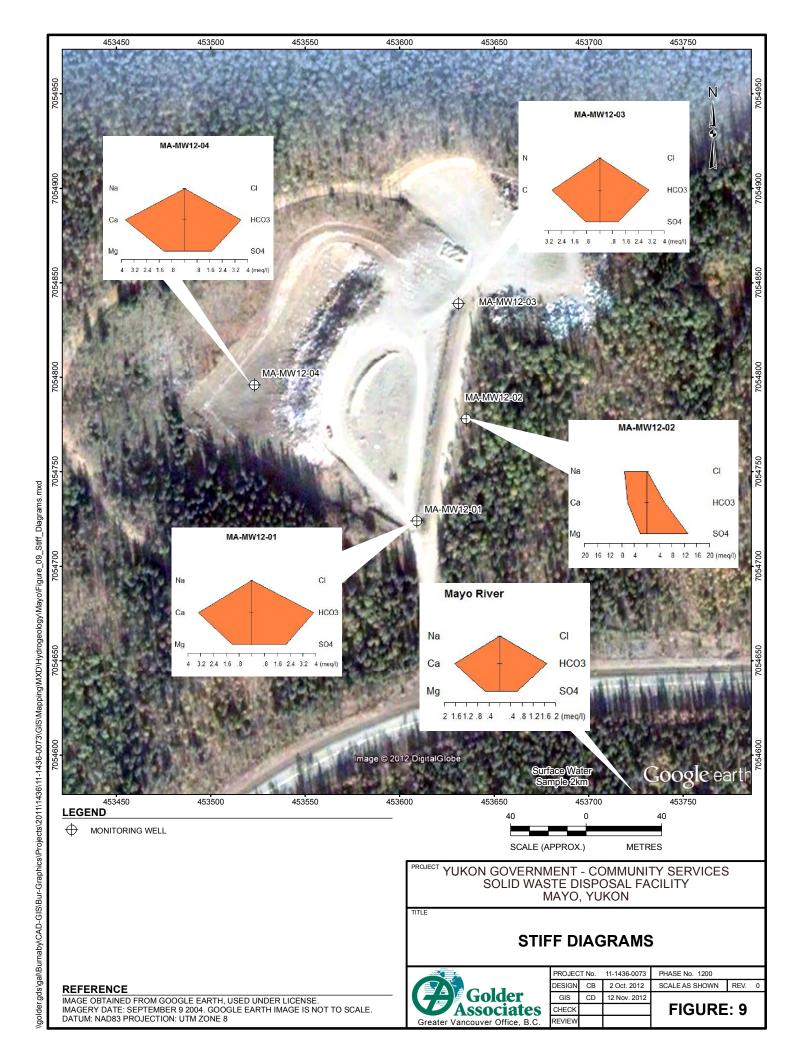

PROJECT YUKON GOVERNMENT - COMMUNITY SERVICES SOLID WASTE DISPOSAL FACILITY MAYO, YUKON

TITLE

SCHOELLER PLOT

	PI
Golder	
Associates	
	F

FILE No. 1114360073-1200-1260-FIC	FILE No.	PROJECT No. 11-1436-0073		
SCALE NOT TO SC	SCALE			DESIGN
	_	16NOV12	JD	CADD
FIGURE 7	F			CHECK
	1			REVIEW


PROJECT YUKON GOVERNMENT - COMMUNITY SERVICES
SOLID WASTE DISPOSAL FACILITY
MAYO, YUKON

TITLE

PIPER PLOT

PROJECT No. 11-1436-0073		FILE No. 1114360073-1200-1260-FIG_		
DESIGN			SCALE	NOT TO SCAL
CADD	JD	16NOV12		
CHECK			FIG	SURE 8
REVIEW				

MAYO SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

APPENDIX A

Site Photographs

Photograph 1: Mayo Facility Drilling Well MA-MW12-03; looking northwest.

Photograph 2: Mayo Facility Drilling Well MA-MW12-02; looking north.

Photograph 3: Mayo Facility Drilling Well MA-MW12-04; looking southwest.

Photograph 4: Mayo Facility Drilling Well MA-12-04; looking southwest.

Photograph 5: Mayo Facility Drilling Well MA-MW12-01; looking north.

Photograph 6: Mayo Facility Waste Material; looking west to south.

o:\final\2011\1436\11-1436-0073\1114360073-511-r-rev0-1200\appendices\app a\site photos.docx

MAYO SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

APPENDIX B

Well Construction Logs

RECORD OF MONITORING WELL: MA-MW12-01

DRILLING DATE: July 19, 2012

SHEET 1 OF 4 DATUM: Local

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Mayo

DRILLING CONTRACTOR: Midnight Sun Drilling

ш		Q _Q	SOIL PROFILE				SA	MPL	ES		PID ppm						⊕						, (1)	PIEZOMETER	₹,
DEPTH SCALE METRES		BORING METHOD		LOT		~		.3m	٥.	% .		5	1	0	15	20			ı	1	ı		ADDITIONAL LAB. TESTING	PIEZOMETEF STANDPIPE OR THERMISTOF INSTALLATIO	R.
MET		SING	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm							ı	ER C	ONTEN	IT PER	CENT	B. TE	INSTALLATIO	N
В		BOR		STR/	(m)	=		BLO	8	REC		50	10	10 1	150	200		Wp I	0 2			⊣ WI 40	⋖ ጟ		
_ (5	_	Ground Surface	٠,								I												Stickup = 0.85m	
			(SP) fine SAND, some gravel, light brown, moist.		0.00																				
· ·																									
_	1																								
			(CM CM) CAND and CDAVEL light	0	1.52																				
			(SW-GW) SAND and GRAVEL, light brown, moist.	٥.٥	1.52																				
. :	2			o O																					
				. 0																					
				0																					
				0.0																					
11 11 11	3			0																					
				٥.٥																					
				, O.																					
			(SM) SILTY SAND, trace gravel, dark brown, moist.		3.66																				
	4 .																								
	100	Ž																							
	7.001	nger L																							
	popul	orine d ,																						Destacite Ossi	
	ME Drifton Tarak Mountain August double	Air Rotary																						Bentonite Seal	
	H 40																								
	1																								
	5 2	2																							
	7																								
	В																								
9	9																								
10		L				L.		_							L			L_		L_		L_			
"			CONTINUED NEXT PAGE																						
D	EΡ	TH:	SCALE							7		-		tes							LOGG	ED: Al	В		
	: !								(Ď	As	00 80	idei ocia	r tes										RAFT	
-																									

RECORD OF MONITORING WELL: MA-MW12-01

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Mayo

DRILLING DATE: July 19, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 2 OF 4 DATUM: Local

8	SOIL PROFILE				SAN	MPLE	ES .		PID ppm					⊕					. (2)	PIEZOMETER,	
METRES BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	% ≻	PID ppm			15	20		Wp I	DNTEN	/	⊣ wı	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION	
N 10 11 12 13 14 M5 Drilech Truck Mounted Auger Drill Rig 16 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	(SM) SILTY SAND, trace gravel, dark brown, moist. (continued) - gravel layer at 17.07m depth. (SW) SAND, trace gravel, red-brown,	STRAT	DEPTH (m)		F	BLOM	008	RECO RECO	5 - 5	3 11	00 1	50	2000					- W W W W W W W W W W W W W W W W W W W	TYPE TO THE TOTAL	Bentonite Seal	
20 —	moist.																				

PROJECT: Yukon Landfill Assessment LOCATION: Mayo

1:50

CLIENT: Yukon Government Community Services

RECORD OF MONITORING WELL: MA-MW12-01

DRILLING DATE: July 19, 2012

DRILLING DATE: July 19, 2012
DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 3 OF 4 DATUM: Local

CHECKED: DRAFT

PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION SAMPLES PID ppm SOIL PROFILE BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING \oplus CORE Madd did did did did STRATA PLOT BLOWS/0.3m 10 15 20 CORE No. NUMBER ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DEPTH OW Wp F - WI (m) 100 150 200 20 (SW) SAND, trace gravel, red-brown, moist. (continued) 21 21.95 (SP) fine SAND, some gravel, some 22 silt, dark brown, moist. 23 (SW) SAND, some gravel, grey, moist. 23.77 24 M5 Driltech Truck Mounted Auger Drill Rig (SM) SILTY SAND, dark brown, moist. 24.69 Bentonite Seal 25 26 27 28 29 30 CONTINUED NEXT PAGE LOGGED: AB DEPTH SCALE

RECORD OF MONITORING WELL: MA-MW12-01

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Mayo

DEPTH SCALE

1:50

DRILLING DATE: July 19, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 4 OF 4

DATUM: Local

LOGGED: AB

CHECKED: DRAFT

\neg	QO ₁ -	SOIL PROFILE				SAI	MPL	ES		PID ppm					⊕						-jg	PIEZOMETER, STANDPIPE
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm	50	100	15		00	Wp	<u> </u>	—o ¹	N	RCENT	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
30		(SM) SILTY SAND, dark brown, moist. (continued)									30	100	10	0 2				20		40		Bentonite Seal
31	l Rig																					10/20 Silica Sand
12	M5 Driltech Truck Mounted Auger Drill Rig	Air Rotary																				
33	M5 Driltech																					51mm Slotted PVC Pipe
333 333 335 336 336 338 338		- grey and wet at 33.53m depth.																				
		End of Monitoring Well.		34.14																		
35																						
66																						
17																						
88																						
19																						
Ю										_												

RECORD OF MONITORING WELL: MA-MW12-02

DRILLING DATE: July 20, 2012

SHEET 1 OF 3 DATUM: Local

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Mayo

DRILLING CONTRACTOR: Midnight Sun Drilling

	Τ	SOIL PROFILE				SA	MPL	ES		PID ppm					+						. (2)	PIEZOMETER,
METRES BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm	1	10	15	2		Wp		—⊖ ^V		⊣ wı	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
	†	Ground Surface	S				ш			Ę	50 1	00	150	20	0		10 2	20 3	30 4	10		Stickup = 0.95m
1		(SP) fine SAND, dark grey, wet. (SP) fine SAND, some gravel, dark brown, moist.		0.61																		
er Drill Rig		(SM) SILTY SAND, dark brown, moist.		3.66																		
o o M5 Drillech Truck Mounted Auger Drill Rig Ar Rotary	All Notally	(SW) SAND, some gravel, some silt, dark grey, brown, moist.		4.88																		Bentonite Seal
8																						
10 —		CONTINUED NEXT PAGE								. – –				. — —	. – –							
DEPTH:	sc	CALE	•		•	•	•	(Ž	G	olde ocia	r								ED: AE		RAFT

RECORD OF MONITORING WELL: MA-MW12-02

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Mayo

DRILLING DATE: July 20, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 2 OF 3 DATUM: Local

	5		SOIL PROFILE	-			SAI	MPLE	ES		PID ppm						⊕					J. G.	PIEZOMETER STANDPIPE	₹,
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm	50	10		15 150	200		Wp	—⊖\		CENT WI	ADDITIONAL LAB. TESTING	PIEZOMETER STANDPIPE OR THERMISTOR INSTALLATIO	R N
- 10			(CM) CAND assessment assessit	1,,								1	100	<u> </u>	130	200			20		+0			
· 11	M5 Dritech Truck Mouned Auger Drill Rig	Air Rolary	(SW) SAND, some gravel, some silt, dark grey, brown, moist. (continued) - wet at 15.85m depth.																				Bentonite Seal	
· 17 · 18 · 19 · 20																							Sand 51mm Slotted PVC Pipe	
			CONTINUED NEXT PAGE							-74	<u> </u>													
DE 1 :			CALE							7 <u>a</u>	As	iolo	der	•						LOGG			RAFT	

RECORD OF MONITORING WELL: MA-MW12-02

DRILLING DATE: July 20, 2012

SHEET 3 OF 3 DATUM: Local

CHECKED: DRAFT

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Mayo

1:50

DRILLING CONTRACTOR: Midnight Sun Drilling

	_	1			_					DID						_					1	
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	1 -	1		1	MPL			PID ppm					\oplus						NG NG	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
1 SC,	ME		STRATA PLOT	ELEV.	ER	ш	BLOWS/0.3m	Š	RY %	PID ppm	5	10	15	20) 						ADDITIONAL LAB. TESTING	THERMISTOR INSTALLATION
EPTF	RING	DESCRIPTION	ATA	DEPTH	NUMBER	TYPE	/SMC	CORE No.	COR	ppm						Wp		${\longrightarrow}_{l}$	NT PEF V	RCENT WI	ADDI AB. T	
Δ	ВО		STR	(m)	z		BL(Ö	Ä	į	50 1	00	150	20	10					40	, ,	
- 20			٠, .																			
	Air Rotary	(SW) SAND, some gravel, some silt, dark grey, brown, moist. (continued)		1																		51mm Slotted PVC Pipe
	Air			20.42								_										PVC Pipe
		End of Monitoring Well.		20.42																		
21																						
22																						
00																						
23																						
24																						
24 25 26																						
25																						
26																						
27																						
28																						
20																						
29																						
28 29																						
	L		1	L						L						L		1	1		L	
	PTH:] SCALE		<u> </u>			<u> </u>		7	G	olde	r			<u> </u>	I	1	1		ED: A		DAET

PROJECT: Yukon Landfill Assessment LOCATION: Mayo

1:50

CLIENT: Yukon Government Community Services

RECORD OF MONITORING WELL: MA-MW12-03

DRILLING DATE: July 21, 2012
DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 1 OF 4

DATUM: Local

: July 21, 2012

CHECKED: DRAFT

PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION PID ppm SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING \oplus STRATA PLOT BLOWS/0.3m 10 15 20 CORE No. RECOVERY 9 NUMBER ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DEPTH ppm −OW Wp F ⊣ wi (m) 100 150 200 Stickup = 0.88m Ground Surface (GW-SW) GRAVEL and SAND, trace 0.00 silt, dark brown, wet. ° C , O O o, C 00. , O. 0,0 0 (SW) SAND, some gravel, trace silt, 3.35 dark brown, moist. M5 Driltech Truck Mounted Auger Drill Rig (SM) SILTY SAND, red-brown, moist. 4.88 Bentonite Seal (ML) CLAYEY SILT, dark grey, moist. 7.62 9 (SM) SILTY SAND, some gravel, red-brown, moist. 9.75 CONTINUED NEXT PAGE LOGGED: AB DEPTH SCALE

1:50

RECORD OF MONITORING WELL: MA-MW12-03

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Mayo DRILLING DATE: July 21, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 2 OF 4 DATUM: Local

PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION PID ppm SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING \oplus CORE Madd DIA Madd DI STRATA PLOT BLOWS/0.3m 10 15 20 CORE No. NUMBER ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DEPTH \circ^{W} Wp F - WI (m) 100 150 200 (SM) SILTY SAND, some gravel, red-brown, moist. (continued) - dark grey from 11.28m - 13.72m depth. 12 13 14 M5 Driltech Truck Mounted Auger Drill Rig Bentonite Seal 16 17 (SP) fine SAND, dark grey, moist. 17.37 18 19 20 CONTINUED NEXT PAGE LOGGED: AB DEPTH SCALE CHECKED: DRAFT

RECORD OF MONITORING WELL: MA-MW12-03

DRILLING DATE: July 21, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 3 OF 4 DATUM: Local

CLIENT: Yukon Government Community Services
PROJECT: Yukon Landfill Assessment
LOCATION: Mayo

DRILLING DATE: A
DRILLING CONTR

ш		ОО	SOIL PROFILE				SA	MPLI	ES		PID ppm						⊕						. (7)	PIEZOMETER,	
DEPTH SCALE	IE I NEO	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	CORE No.	ORE VERY %		5	11	0	15	20)	WA	I	L ONTEN	LT PER	CENT	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION	
DEF	_	BORI		STRAT	DEPTH (m)	Ž	۲	BLOW	COR	CORE RECOVERY	ppm	50	10	0	150	20	0	Wp		→W 20 3		⊣ WI 10	LAB LAB		
- 2	221		(SP) fine SAND, dark grey, moist. (continued)									50	10		150	20	0			20 3	0 4				
EMPLATE BETA 1.GOT Library BC REGION LIBRARY GLB befootdak 09/13/12	224	M5 Driltech Truck Mounted Auger Drill Rig	(SP) fine SAND, some gravel, dark grey, moist.		22.86																			Bentonite Seal	
(1200 MA),GPJ Output Form:BC_BOREHOLE (ENVIRO) T	227	M5 Drittech	(SW) ???????, some gravel, grey, moist.		25.91																				
SIPROJECTS/2011/438/11-1438-0073/DRAFTING/GINTY1-1	229		(SM) SILTY SAND, red-brown, moist.		28.65							_					· — —								
IIIE:N:BUR-GRAPHIC	 DEF 1 :		SCALE			1			(7	A	Go	oldei ocia	: tes						l L		ED: AE		RAFT	

RECORD OF MONITORING WELL: MA-MW12-03

DRILLING DATE: July 21, 2012

SHEET 4 OF 4 DATUM: Local

CHECKED: DRAFT

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Mayo

1:50

DRILLING CONTRACTOR: Midnight Sun Drilling

ц		SOIL PROI	FILE				SAM	/IPLE	S		PID ppm					⊕						ی. ا	PIEZOMETER,
DEPTH SCALE METRES	BOBING METHOD	DESCRIPTION		STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	/ERY %	PID ppm	1		15	20		Wp I		—⊖ ^V		⊣ wı	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
				.v	. ,		+	ш	+	_	5	0 1	00	150	200)	1	0 2	20 3	30 4	10		
30		(SM) SILTY SAND, red-brown (continued)																					Bentonite Seal
32	M5 Driltech Truck Mounted Auger Drill Rig	- grey and wet at 31.09m dep	th.																				10/20 Silica Sand
34		End of Monitoring Well.			34.75																		51mm Slotted PVC Pipe
35		Lie of montaing vol.																					
37																							
37 38 39																							
		H SCALE								7 ≜	G	olde	r						<u> </u>	LOGG	ED: A		DAET

PROJECT: Yukon Landfill Assessment LOCATION: Mayo

1:50

CLIENT: Yukon Government Community Services

RECORD OF MONITORING WELL: MA-MW12-04

DRILLING DATE: July 22, 2012

DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 1 OF 4 DATUM: Local

CHECKED: DRAFT

PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION PID ppm SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING \oplus CORE Madd did did did did STRATA PLOT BLOWS/0.3m 10 15 20 CORE No. NUMBER ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DEPTH \circ^{W} Wp F –ı wı (m) 100 150 200 Stickup = 0.95m Ground Surface (SW-GW) SAND and GRAVEL, dark 0.00 brown, moist. . C رو رو • C 00. 0 Ó 000 (SM) SILTY SAND, some gravel, red-brown, moist. 3.66 M5 Driltech Truck Mounted Auger Drill Rig Bentonite Seal 9 CONTINUED NEXT PAGE LOGGED: AB DEPTH SCALE

1:50

RECORD OF MONITORING WELL: MA-MW12-04

DRILLING DATE: July 22, 2012

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Mayo

DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 2 OF 4 DATUM: Local

PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION PID ppm SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES \oplus ADDITIONAL LAB. TESTING CORE Madd did did did did STRATA PLOT BLOWS/0.3m 10 15 20 CORE No. NUMBER ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DEPTH \circ^{W} Wp F - wi (m) 100 150 200 (SM) SILTY SAND, some gravel, red-brown, moist. (continued) (SW) SAND, some gravel, trace silt, 10.97 dark grey, moist. 12 14 M5 Driltech Truck Mounted Auger Drill Rig Bentonite Seal (SM) SILTY SAND, some gravel, 15.24 red-brown, moist. 16 17 18 19 20 CONTINUED NEXT PAGE LOGGED: AB DEPTH SCALE CHECKED: DRAFT

RECORD OF MONITORING WELL: MA-MW12-04 CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Mayo

DRILLING DATE: July 22, 2012

DRILLING CONTRACTOR: Midnight Sun Drilling

DATUM: Local

SHEET 3 OF 4

1:50

RECORD OF MONITORING WELL: MA-MW12-04

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Mayo

DRILLING DATE: July 22, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 4 OF 4 DATUM: Local

CHECKED: DRAFT

۱ ا	do.	2	SOIL PROFILE				SA	MPL	ES		PID ppm					+						_, _	PIEZOMETER,
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm		10	15		20	W	<u> </u>	—o'		→ wı	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
30		1	(SM) SILTY SAND, red-brown, moist. (continued)	S				В			5	0 1	00	150) 2	00		10	20	30	40		; -1 7 -1 -1 -1 -1
31	uger Drill Rig		- grey and wet at 31.39m depth.																				10/20 Silica Sand
33	M5 Driltech Truck Mounted Auger Drill Rig	Air Rotary																					51mm Slotted PVC Pipe
35			End of Monitoring Well.		35.36																		
36			Lie of mornioning viola.																				
37																							
37 38 39																							
40											a .	olde									GED: AI		

APPENDIX C

Well Development and Sampling Sheets

GROUNDWATER DEVELOPMENT AND ☐ Development PURGING/SAMPLING DATA SHEET D Purging/Sampling Well No .: MA-MW12-0 Project No.: 11-1436-0073/1200 Location: MAYO Date: 11-SEP-12 Time: 10:00 Weather: CLEAR Temperature: Completed by: A BAOGER MONITORING WELL INFORMATION Time of Measurement: Tidally Influenced: □ Yes No Depth to product: Product thickness: One well volume: Depth to water Below Top of Casing: A 32-19 metres (B-A)+2.0 =2.3 32 6.64 litres - for a 51 mm (2.0 inch) diameter well Depth to Bottom of Well Below Top of Casing: B 35.51 metres $(B-A)^*1.1 =$ litres - for a 38 mm (1.5 inch) diameter well Diameter Standpipe: C mm Sample intake depth: **EQUIPMENT LIST** pH and Temp. Meter. Model Serial No. Calibration Buffers: 84 07 □ 10 Conductivity Meter. Model Serial No. Calibration Solution: Dissolved Oxygen Meter: Model Serial No. ☐ D.O. Chemet Ampoule Pump: ☐ None ☐ Waterra ☐ Peristaltic ☐ Submersible ☐ Bailer Type: Pump Details: WELL DEVELOPMENT/PURGING Purge Volume: Well. Vol. X 4.6.64 litres Avg. Flow Rate: L/min. Start: 10:08 Finish: Volume Diss. O₂ (mg/L) or % Water Time Cond. Redox Removed (°C) (Units) (uS/cm) Level (mV) (L) Remarks (m) 10:10 3.52 6.40 10:15 2.79 6.81 10123 1092 32.20 10:30 20 89 1101 10; 91 7.19 1109 32.19 2.90 7.23 10:49 20 37.15 SAMPLE COLLECTED

Analysis	Tyr				Co	ntainer Size						1
Tutaly 313	191	Je .	40 mL	100 mL	250 mL	500 mL	11	2 L	4L	Filte	ered	Preservatives
	☐ Plastic	□ Glass					1			☐ Yes	□No	
	□ Plastic	☐ Glass				1	98	37	19.55	□ Yes	□ No	8
	□ Plastic	☐ Glass				115	100			☐ Yes	□No	
	□ Piastic	☐ Glass						-		□ Yes	□ No	
	□ Plastic	☐ Glass				7.				□ Yes	□No	
The State of	□ Plastic	☐ Glass							-	□ Yes	□ No	
-	□ Plastic	☐ Glass		2			- 75		1000	□ Yes	□ No	,
	□ Plastic	☐ Glass								□Yes	□ No	
SCN No.	Consu	imables:		rra Tubing n Tubing			PE/Teflor	n Tubing				ter Filter

OR

Metallic-like □

Comments: Odour:

Sheen:

☐ Yes

□ No

□ No

If yes

Hydrocarbon-like

		PL	JRGING	WATER S/SAMP!	DEVE LING D	LOPME ATA S	ENT AN HEET	ID				evelopment urging/Samplin
cation: M	A-N LFAR			emperature:	100		Project No Date: Complete		11.5	ES: 17	2077	5/1200 Time: _\\\
ONITORING	WELL	INFORM					Complete	u by.	+	BAN	2645	
ne of Measurem epth to product: epth to water Bel epth to Bottom of ameter Standpip	low Top of Well Be	Production Casing:	ct thickness:	A 32.08 B 23.30	metres i	Tidally Influ One well v (B-A)*2.0 = (B-A)*1.1 = Sample int	olume: = 1.22-2		litres litres metre	- for a 5	51 mm (2 38 mm (1	.0 inch) diameter
and Temp. Met nductivity Meter solved Oxygen mp: None mp Details:	er: : : : : : : : : : : : : : : : : : :	Model Model Model aterra	Peristaltic	S & M	Serial No. Serial No. Serial No.			alibrationalista de la	n Solut		1913	
ge Volume: g. Flow Rate:		/ol. x <u>2.44</u>		= 10	litre	nin.	Start:	11:	30	Fi	inish:	12: 25
Time R	emoved (L)	Temp. (°C)	pH (Units)	Cond. (uS/cm)	Redox (mV)	Diss. O ₂ (mg/L) or %	3 12 1	Wate Level (m)		in I	Rema	arks
11:35	1	211000							50	DME	SER	IMENT
12:10	1	3.91	(22	1701				1	P	NRO		RomWELL
12:19	3		6.33	1791				131.5		. ~		MATER/SAMO
2:25	0	3.78	G-79	1920					The state of	MBE	NG 1	curvis.
	0	3.70	7.12	2366		-			St	tupe	ECO	PLLECTED
	-		7.10			-		-				WATER
		-	TIATE	ING		In F		_	77	1125	ATEL	15 r 6 TO
				MPLE			BEF	one	C	LOG		SING SO
	2017			TUTTAL		ECTE			2	Anne	112	COLLECT
	-	- 0		IOTTIC	201	Progra	15 cus	(II)		0 .	0.0	0
										POH	35.	70 - 12:
nments:											67	
Sheen:	Yes	□ No If		rocarbon-like		Metallic IIII	elike □	lty				
Analysis	T				C	ontainer Size		-		100		
Analysis		Туре	40 n	nL 100 mL	250 mL	500 mL	11	2L	4 L	Filte	ered	Preservatives
	□ PI	astic D	Glass					. 61	177	□Yes	□ No	
1 2			Glass			1	13,1	0 1	1,77	□ Yes	□No	The same of the sa
		1	Glass				1 9	4	MIT	□ Yes	□No	
			Glass				1		177	□ Yes	□ No	No IT Days
-			Glass				100	9 //	1000	☐ Yes	□No	
	4		Glass				1 . 4	Val.	11 19	□ Yes	□No	10 2 1
			Glass				1 4		137	□ Yes	□No	
	DPI	astic D	Glass				10	111	= Kh.	□ Yes	□No	
SCN No.		Consumab		licon Tubing		_ D HD	PE/Tefion	Tubing	10	□ Gi	roundwat	er Filter

□ D.O. Ampoules

C:\Users\BrMacdonald\Desktop\New Forms\GW Development and Purging Sampling Data Sheet.docm

GROUNDW/ PURGING/S

GROUNDWATER DEVELOPMENT AND PURGING/SAMPLING DATA SHEET

Development
Purging/Sampling

-	YAN		2.03				Project No Date:		1.14136 SER.13		3 /1200 ime: 13:35
ther: CL	EAR		Ter	mperature:	5.0		Complete	-	3 BM		-
one of Measure pth to product pth to water B pth to Bottom ameter Standp	ement:	Production of Casing:	ct thickness:		netres (i	idally Influence well vo 3-A)*2.0 = 3-A)*1.1 = 4-A)*1.1 =	lume: 2-3.75	= 75	No litres - for a litres - for a metres	51 mm (2.0 38 mm (1.5	inch) diameter we
and Temp. Menductivity Met asolved Oxygemp: Normp Details:	leter: ter: en Meter:	Model Model		5	Serial No. Serial No. Serial No.			Calibration Calibration D.O. Che Bailer Ty	Solution: emet Ampoule	1413	7 🗆 10
ELL DEVE rge Volume: g. Flow Rate:	Well. V	NT/PURO		= 22.S	litre:		Start:	13: 0	13	Finish:	14:12
Time	Volume Removed (L)	Temp.	pH (Units)	Cond. (uS/cm)	Redox (mV)	Diss. O ₂ (mg/L) or %		Water Level (m)		Remar	ks
13:45	0.5	4.97	6.79	769				(111)		-	
13:82	7	434	7.21	354							
13259	15	3.50	7.39	739							
14:03	20	3.65	7.42	747							
14:12	23	356	7.41	7.43				31.7	SAM	PLE (COLLECTE
			-								
			-						NO	STUPS	DURING
	-	-	-						Pur	GENG	TO.
								-	PRE	EVER	SETTLINE
			-						SED.	INEN	TI T
1			-						TUBI	ING	ONC
					1				MAN	ER LEI	JELS RECORD
											- Gara
Odour: Sheen:	□ Yes □ Yes Clear	□ No If		rocarbon-like		Metallic	-like 🗆	Cilty	o ny i th	N OF	MYE.
Odour:	□ Yes	□ No If	f yes Hyd	rocarbon-like	1111	MIIDI,	Very S	Silty		Lilia	A MAN N
Sheen:	□ Yes	□ No If	fyes Hyd	1,11111	1111	Ontainer Size	I Very			Filtered	Preservatives
Odour: Sheen: Turbidity:	□ Yes Clear	□ No If	fyes Hyd		1111	MIIDI,	Very S	Silty 2 L	4L	Filtered	Preservatives
Odour: Sheen: Turbidity:	□ Yes Clear	Type	f yes Hyd I I I I I I I 40 Glass	1,11111	1111	Ontainer Size	I Very		4 L □ Yes	s 🗆 No	Preservatives
Odour: Sheen: Turbidity:	□ Yes Clear	Type Plastic Plastic Total Type	f yes Hyd I I I I I I I 40 Glass Glass	1,11111	1111	Ontainer Size	I Very		□ Yes	s	Preservatives
Odour: Sheen: Turbidity:	□ Yes Clear	Type Plastic	f yes Hyd I I I I I I I 40 Glass Glass Glass	1,11111	1111	Ontainer Size	I Very		4 L □ Yes	s	Preservatives
Odour: Sheen: Turbidity:	Clear DF	Type Plastic	f yes Hyd I I I I I I I 40 Glass Glass Glass Glass	1,11111	1111	Ontainer Size	I Very		□ Yes	s No	Preservatives
Odour: Sheen: Turbidity:	Clear Clear	Type Plastic	f yes Hyd I I I I I I I 40 Glass Glass Glass Glass Glass	1,11111	1111	Ontainer Size	I Very		☐ Ye	s	Preservatives
Odour: Sheen: Turbidity:	Clear Clear	Type Plastic	f yes Hyd I I I I I I I 40 Glass Glass Glass Glass Glass Glass Glass	1,11111	1111	Ontainer Size	I Very		☐ Yer☐ Yer☐ Yer☐ Yer☐ Yer☐ Yer☐ Yer☐ Yer	S No S No S No	Preservatives
Odour: Sheen: Turbidity:	Clear Clear	Type Plastic Plasti	f yes Hyd I I I I I I I 40 Glass Glass Glass Glass Glass	1,11111	1111	Ontainer Size	I Very		Ye:	s	Preservatives

GROUNDWATER DEVELOPMENT AND PURGING/SAMPLING DATA SHEET

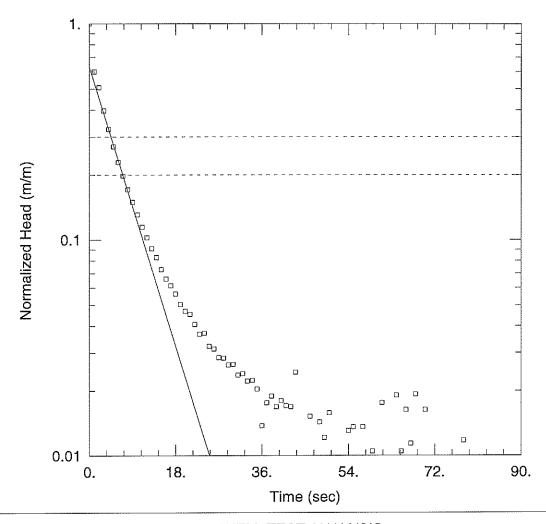
Development
Purging/Sampling

	A-N		2-	04			-	roject No					73/1200
	ERCI		-	Temper	aturo.	400		ate: Complete		-SEP.			ime: 14:45
								ompiete	d by:	7 B	112	NEIG	
ne of Measurement to product: pth to water Belopth to Bottom of meter Standpipe	ow Top of Well Belo	Product Casing:	t thickne	ss:	. 65 me 38 me	etres (E	idally influence well vo 3-A)*2.0 = 3-A)*1.1 = ample inta	lume: 3-73	7.5				inch) diameter well inch) diameter well
QUIPMENT L and Temp. Meter inductivity Meter: solved Oxygen I imp: None imp Details:	er: : Meter:	Model _ Model _ Model _ erra □	YS		S	MP5 erial No. erial No. erial No. ble			Calibration 6 Calibration 5 D.O. Che Bailer Ty	Solution: met Amp		141	
ELL DEVELO		T/PURG		= 2	2.5	litres		Start:	14:5	u	Fin	ich:	1509
	Volume lemoved (L)	Temp.	pH (Units		ond. S/cm)	Redox (mV)	Diss. O ₂ (mg/L) or %		Water Level (m)			Rema	
-		3.27	6.5	-	12								
	8	2.82	6.9		12								
15:03 1	20	2.54	7.0		20				17.66				
		2.57	7.10		03					SAY	MP	EC	OLLECPED
184													
										57	SCH	7713	- NEW 0.90M
omments:	Yes [□ No If			rbon-like	11111	MIII		Silty			SN E	AVIII
Sheen:	Clear I		The state of the s			C	ontainer Size						Description
Sheen:	lear 1	Туре	-	40 ml	100 ml	250 ml		11	21	41	Filte	red	Preservatives
Sheen: Darbidity: C	D Pia	Туре	Giass	40 mL	100 mL	250 mL	500 mL	1L	2 L	4 L	-		Preservatives
Sheen: Durbidity: C		Type astic	Glass Glass	40 mL	100 mL	250 mL		1L	2 L	1	Filte Yes Yes	□ No	Preservatives
Sheen: Durbidity: C	□ Pi	Type astic astic		40 mL	100 mL	250 mL		11	2 L	1	Yes		10 M
Sheen: Durbidity: C	□ Pi	Type astic astic astic	Glass	40 mL	100 mL	250 mL		11	2 L	0	Yes Yes	□ No	10 M
Sheen: Durbidity: C	□ Pi:	Type astic astic astic astic astic astic astic	Glass Glass	40 mL	100 mL	250 mL		1L	2 L	2 2 2	Yes Yes	□ No □ No	1
Sheen: Durbidity: C		Type astic astic astic astic astic astic astic astic astic	Glass Glass Glass	40 mL	100 mL	250 mL		1L	21	1	Yes Yes Yes Yes	□ No □ No □ No	1
Sheen: Darbidity: C	Pi	Type astic asti	Glass Glass Glass Glass	40 mL	100 mL	250 mL		1L	21	1 1 1	Yes Yes Yes Yes Yes Yes	No No No	10 M

Surface Water Sampling Data Sheet

Field Characterization
Sampling

######################################	ber: tion: her: perature:	MA S OB V OVERCE	0455	25 2	705	3736	Project I Complet Date: Time: Reviewe	ted By:	A 17	BAC	21.5	112	00
Time Volume Removed (L) Temp. PH Cond. Redox (uS/cm) (mV) (mg/L) or % Remarks	and Temp. Meductivity Metosolved Oxyge	eter: Mo er: Mo n Meter: Mo e	odel odel odel a □ Peris	staltic 🗆	S S S	erial No. erial No. erial No.	Ва		Calibratio	on Solut	ion: Ampoule	1413	
	RFACE V	WATER SA	MPLING	G									
	Time										F	Remarks	
Miniments:	0:20	Hemoved (L)	Contract to the second	- Acceptance	# F 507/250/100) (mv	(mg)/L) or %)	-			
Miniments: Odour: Yes No If yes Sheen: Yes No If yes Turbidity: Clear	0.30		0.71	7.0	1.0								
Miniments: Odour: Yes No If yes Sheen: Yes No If yes Turbidity: Clear													
Miniments: Odour: Yes No If yes Sheen: Yes No If yes Turbidity: Clear													
Miniments: Odour: Yes No If yes Sheen: Yes No If yes Turbidity: Clear						4							7
Description Plastic Glass Plastic Plastic Plastic Glass Plastic Pl					-				-				
Odour:	-				-				-		-		
Odour:					-		-						
Odour:					1								
Manual													
Odour:					1								
Analysis Type 40 mL 100 mL 250 mL 500 mL 1 L 2 L 4 L Filtered Preserval Image: Plastic Image	Odour: Sheen: Furbidity:	□ Yes □ N	o If yes	11111	111111	111111	1111	Very S	Silty				
40 mL 100 mL 250 mL 500 mL 1 L 2 L 4 L						Cont	tainer Size						
□ Plastic □ Glass □ Yes □ No	Analysis		Туре		100 mL	250 mL	500 mL	11	2L	4L	Filte	ered	Preservatives
□ Plastic □ Glass □ Yes □ No □ Plastic □ Glass □ Yes □ No □ Plastic □ Glass □ Yes □ No											☐ Yes	□ No	
□ Plastic □ Glass □ Yes □ No □ Plastic □ Glass □ Yes □ No		Profession 198	11101										
□ Plastic □ Glass □ Yes □ No													
		☐ Plastic		-									
Li idass		[7] Discrib	LI Glass	-								- 30	
□ Plastic □ Glass □ Yes □ No			ПСІот								ITTES	LINO	
□ Plastic □ Glass □ Yes □ No		□ Plastic									□ Yes	□No	



MAYO SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

APPENDIX D

Slug Test Data

Data Set: \...\MA-MW12-01 Test 1.aqt

Date: 11/22/12 Time: 13:03:20

PROJECT INFORMATION

Test Well: MA-MW12-01 Test Date: 12-September-12

AQUIFER DATA

Saturated Thickness: 3.25 m Anisotropy Ratio (Kz/Kr): 1.

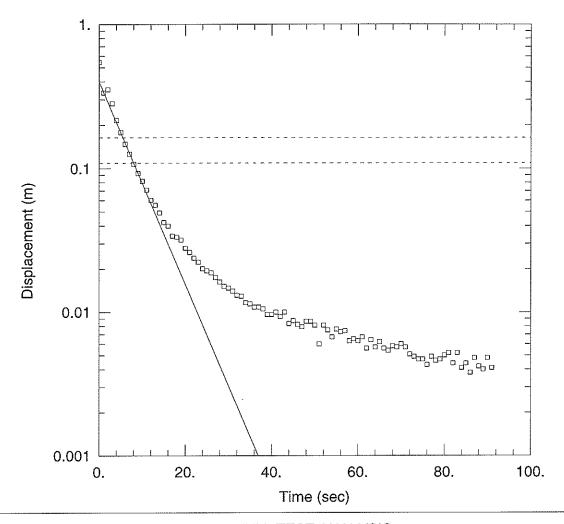
WELL DATA (MA-MW12-01)

Initial Displacement: 0.545 m

Total Well Penetration Depth: 3.25 m

Casing Radius: 0.025 m

Static Water Column Height: 3.25 m


Screen Length: 3.05 m Well Radius: 0.092 m Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0002178 m/sec y0 = 0.3443 m

Data Set: \...\MA-MW12-01 Test 2.aqt

Date: 11/22/12 Time: 13:03:32

PROJECT INFORMATION

Test Well: MA-MW12-01 Test Date: 12-September-12

AQUIFER DATA

Saturated Thickness: 3.25 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (New Well)

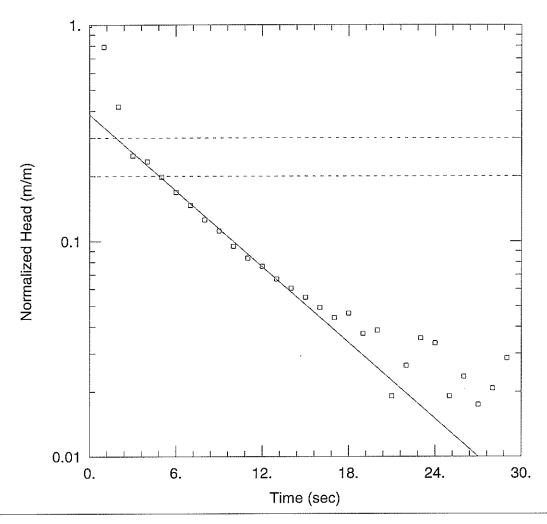
Initial Displacement: 0.545 m

Total Well Penetration Depth: 3.25 m

Casing Radius: 0.025 m

Static Water Column Height: 3.25 m

Screen Length: 3.05 m Well Radius: 0.092 m


SOLUTION

Aquifer Model: Unconfined

K = 4.488E-5 m/sec

Solution Method: Bouwer-Rice

y0 = 0.3995 m

Data Set: \...\MA-MW12-01 Test 3 FH.aqt

Date: 11/22/12 Time: 13:03:42

PROJECT INFORMATION

Test Well: MA-MW12-01 Test Date: 12-September-12

AQUIFER DATA

Saturated Thickness: 3.25 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MA-MW12-01)

Initial Displacement: 0.545 m

Total Well Penetration Depth: 3.25 m

Casing Radius: 0.025 m

Static Water Column Height: 3.25 m

Screen Length: 3.05 m Well Radius: 0.092 m

SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

K = 3.733E-5 m/sec y0 = 0.2096 m

Data Set: \...\MA-MW12-02 FH.aqt

Date: 11/22/12 Time: 13:04:37

PROJECT INFORMATION

Test Well: MA-MW12-02 Test Date: 12-September-12

AQUIFER DATA

Saturated Thickness: 3.05 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MA-MW12-02)

Initial Displacement: 0.545 m Static Water Column Height: 3.05 m


Total Well Penetration Depth: 3.05 m Screen Length: 3.05 m

Casing Radius: 0.025 m Well Radius: 0.092 m

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: <u>Bouwer-Rice</u>

K = 4.867E-6 m/sec y0 = 0.3448 m

Data Set: \...\MA-MW12-02.aqt

Date: 11/22/12 Time: 13:04:53

PROJECT INFORMATION

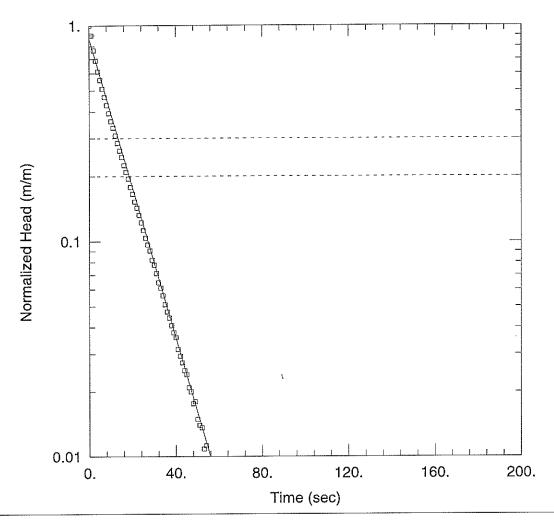
Test Well: MA-MW12-02
Test Date: 12-September-12

AQUIFER DATA

Saturated Thickness: 3.05 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MA-MW12-02)

Initial Displacement: 0.545 m Static Water Column Height: 3.05 m


Total Well Penetration Depth: 3.05 m Screen Length: 3.05 m

Casing Radius: 0.025 m Well Radius: 0.092 m

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: <u>Hvorslev</u>

K = 1.28E-5 m/sec y0 = 0.4759 m

Data Set: \...\MA-MW12-03 Test 1.aqt

Date: 11/22/12 Time: 13:05:07

PROJECT INFORMATION

Test Well: MA-MW12-03
Test Date: 12-September-12

AQUIFER DATA

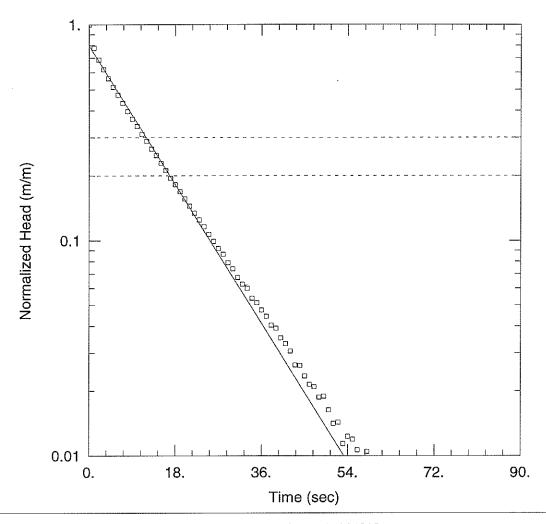
Saturated Thickness: 3.38 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MA-MW12-03)

Initial Displacement: 0.545 m

Total Well Penetration Depth: 3.38 m

Casing Radius: 0.025 m


Static Water Column Height: 3.38 m

Screen Length: 3.05 m Well Radius: 0.092 m

SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

K = 2.229E-5 m/sec y0 = 0.4754 m

Data Set: \...\MA-MW12-03 Test 2.aqt

Date: 11/22/12 Time: 13:05:21

PROJECT INFORMATION

Test Well: MA-MW12-03 Test Date: 12-September-12

AQUIFER DATA

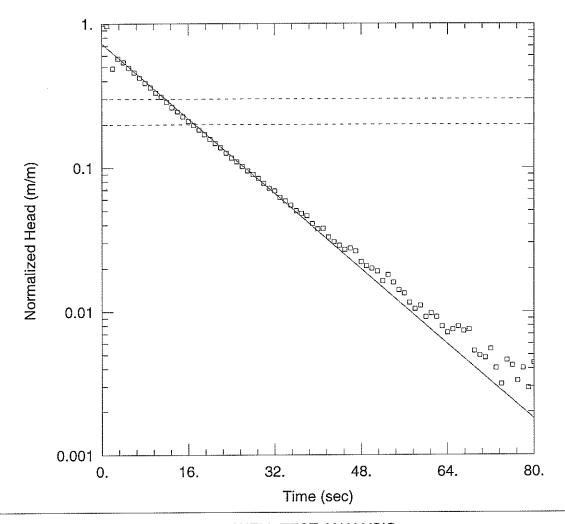
Anisotropy Ratio (Kz/Kr): 1. Saturated Thickness: 3.38 m

WELL DATA (New Well)

Initial Displacement: 0.545 m

Total Well Penetration Depth: 3.38 m

Casing Radius: 0.025 m


Static Water Column Height: 3.38 m

Screen Length: 3.05 m Well Radius: 0.092 m

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 2.294E-5 m/secy0 = 0.4346 m

Data Set: \...\MA-MW12-03 Test 3 FH.aqt

Date: 11/22/12 Time: 13:06:01

PROJECT INFORMATION

Test Well: MA-MW12-03
Test Date: 12-September-12

AQUIFER DATA

Saturated Thickness: 3.38 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MA-MW12-03)

Initial Displacement: 0.545 m Static Water Column Height: 3.38 m

Total Well Penetration Depth: 3.38 m Screen Length: 3.05 m Casing Radius: 0.025 m Well Radius: 0.092 m

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 2.092E-5 m/sec y0 = 0.3964 m

Single-well Response Test Data Sheet

D	Rising	Head
19	Falling	Head

		LATHE LATOR	1001				
	Location: MAYS						
	Project No.: 11-1436-0073/1200						
	Completed By:		CFS				
	Date:	12.569.					
	Time:	14:30					
ONITOR	RING WELL INFO	RMATION			100		-
	Depth to water	helow top of ca	eina:	1 77 17			
				1	meters		
	Depth to bottom				meters		
	Distance from to		round surface:	0.89	meters		
	Well casing dia			0.05	meters	(1 inch = 0.025 meters)	
	Borehold diame	eter:			meters		
	Screen length:				meters	(1 foot = 0.3048 meters)	
	Screened unit:			* * * * * * * * * * * * * * * * * * * *	(eg: sand, si	ilt, clay)	
QUIPME	NT LIST						
	Slug				Bailer		-
	Mass:		kilograms		Water col	umn height:	meters
	Length:	1.0	meters		Inside dia	Company of the Compan	meters
	Diameter:	0.0375	meters	and/or	Volume of	f water removed:	litres
	Pressure transc	ducer serial #:	005105	50342			
		/al:			seconds	or minutes (circle one)	

Time	Elapsed Time	Water Level (m)	Comments
14:34			TX IN 20 cm of BOTTOM
14:38		32.16	SLUG IN
14:43		32.17	scurour
14:48			SLUG IN
14:53			SUG OUT
14:58			SUNG IN
15:03			since our
15:08			Trout

Single-well Response Test Data Sheet

	Rising Head	
K	Falling Head	

	Well No.:	WH - WO	112-02				
	Location:	MAYO					
	Project No.:	11-1436.0	073/1200				
	Completed By:	ABADG					
	Date:	12.5EP.1	THE RESERVE OF THE PARTY OF THE				
	Time:	15:20					
MONITOR	RING WELL INFO	ORMATION					
	Depth to water	below top of cas	sina:	32.36	meters		
		n of well below to		35.41	meters		
		top of pipe to gro		0.85	meters		
	Well casing dia			0.05	meters	(1 inch = 0.025 meters)	
	Borehold diame			0.00	meters	(1 mon = 0.025 meters)	
	Screen length:			10000	meters	(1 foot = 0.3048 meters)	
	Screened unit:				-		
					eg: sand, s	iit, day)	
QUIPME				_			
14	Slug				Bailer		
	Mass:		kilograms		Water co	lumn height:	meters
	Length:	1.0	meters		Inside dia	meter:	meters
	Diameter:	0.0375	meters	and/o	r Volume o	f water removed:	litres
1	Pressure trans	d	CINE	-			-
		ducer serial #:	(30) (3)	0347			
			00 5105	0345	Seconde	or minutes (circle and)	
	Sampling Inter	val:	00 2 102	0345	seconds	or minutes (circle one)	
SINGLE-V	Sampling Inter	val: SE TEST			seconds	or minutes (circle one)	
INGLE-V	Sampling Inter	val:		16:30	seconds	or minutes (circle one)	
INGLE-V	Sampling Inter	val: SE TEST : LS: ZG	Finish time:				1
SINGLE-V	Sampling Inter WELL RESPONS Start time:	val: SE TEST	Finish time:	16:30	Con	mments	-
SINGLE-V	Sampling Inter VELL RESPONS Start time: Time	val: SE TEST : LS: ZG	Finish time: Water Level (m)	16:30 TX IN	- Con		
SINGLE-V	Sampling Inter WELL RESPONS Start time: Time 5:	val: SE TEST : LS: ZG	Finish time: Water Level (m)	16:30	- Con	mments	
SINGLE-V	Sampling Inter VELL RESPONS Start time: Time 15.76 15.30	val: SE TEST : LS: ZG	Finish time: Water Level (m) 32.20 32.35	16:30 TX IN SUUGI	Con 30 0	mments	
SINGLE-V	Sampling Inter VELL RESPONS Start time: Time 15: 76 15: 40 15: 40	val: SE TEST : LS: ZG	Finish time: Water Level (m)	16:30 TX IN SUUGI	Coi	mments	
SINGLE-V	Sampling Inter VELL RESPONS Start time: Time 15: 76 15: 40 15: 40 15: 40 15: 40	val: SE TEST : LS: ZG	Finish time: Water Level (m) 32.20 32.35	16:30 TX IN SUUGI SUUG C	20 0	mments	
SINGLE-V	Sampling Inter VELL RESPONS Start time: Time 15: 76 15: 40 15: 40 15: 45 16: 15	val: SE TEST : LS: ZG	Finish time: Water Level (m) 32.20 32.35	IG:30 TX IN SUUGI SLUG O SLUG O	Coi 30 (mments	
SINGLE-V	Sampling Inter VELL RESPONS Start time: Time 15: 76 15: 40 15: 40 15: 40 15: 40	val: SE TEST : LS: ZG	Finish time: Water Level (m) 32.20 32.35	16:30 TX IN SUUGI SUUG C	Coi 30 (mments	
SINGLE-V	Sampling Inter VELL RESPONS Start time: Time 15: 76 15: 40 15: 40 15: 45 16: 15	val: SE TEST : LS: ZG	Finish time: Water Level (m) 32.20 32.35	IG:30 TX IN SUUGI SLUG O SLUG O	Coi 30 (mments	
SINGLE-V	Sampling Inter VELL RESPONS Start time: Time 15: 76 15: 40 15: 40 15: 45 16: 15	val: SE TEST : LS: ZG	Finish time: Water Level (m) 32.20 32.35	IG:30 TX IN SUUGI SLUG O SLUG O	Coi 30 (mments	
SINGLE-A	Sampling Inter VELL RESPONS Start time: Time 15: 76 15: 40 15: 40 15: 45 16: 15	val: SE TEST : LS: ZG	Finish time: Water Level (m) 32.20 32.35	IG:30 TX IN SUUGI SLUG O SLUG O	Coi 30 (mments	
SINGLE-V	Sampling Inter VELL RESPONS Start time: Time 15: 76 15: 40 15: 40 15: 45 16: 15	val: SE TEST : LS: ZG	Finish time: Water Level (m) 32.20 32.35	IG:30 TX IN SUUGI SLUG O SLUG O	Coi 30 (mments	
SINGLE-V	Sampling Inter VELL RESPONS Start time: Time 15: 76 15: 40 15: 40 15: 45 16: 15	val: SE TEST : LS: ZG	Finish time: Water Level (m) 32.20 32.35	IG:30 TX IN SUUGI SLUG O SLUG O	Coi 30 (mments	

Single-well Response Test Rising Head **Data Sheet** Falling Head Well No .: MA-MU12-03 Location: Project No .: 11-1436.0073 Completed By: 43 AD CHER Date: Time: 6:40 MONITORING WELL INFORMATION Depth to water below top of casing: 31.68 meters Depth to bottom of well below top of casing: 35.06 meters 0.98 Distance from top of pipe to ground surface: meters Well casing diameter: 0.05 meters (1 inch = 0.025 meters) Borehold diameter: meters Screen length: (1 foot = 0.3048 meters) meters Screened unit: (eg: sand, silt, clay) **EQUIPMENT LIST**

M	Slug				Bailer	
	Mass:		kilograms		Water column height:	meter
	Length:	1.0	meters		Inside diameter:	meter
	Diameter:	0.0375	meters	and/or	Volume of water removed:	litres
	Pressure transducer serial #:		0051050342			
Sampling Interval:		rval:			seconds or minutes (circle one)	

SINGLE-WELL RESPONSE TEST

Start time: 16:45

Finish time: 17:18

Time	Elapsed Time	Water Level (m)	Comments
16:45			Tx IN 20 cm from BOTTON
16:48		31.68	SLUG IN
16:53			SLUG OUT
16:58			SCUG JA
17:03			scuc out
17:08			SLVG IN
17:13			suc out
17:18			To out
100			

Single-well Response Test Data Sheet

9	Rising	Head
0	Falling	Head

	Location:						
		MAYO			*		
	Project No.:		0073 1120	00			
	Completed By		CHER				
	Date:	12.5ED.1	2				
	Time:	17:25					
ONITO	RING WELL INF	ORMATION					
	Depth to water	r below top of cas	sing:	7.65	meters		
	Depth to botto	m of well below to		2138	meters		
	Distance from	top of pipe to gro	ound surface:	0.89	meters		
1	Well casing di	ameter:		0.05	meters	(1 inch = 0.025 meters)	
	Borehold diam				meters	, and an area motorey	
	Screen length:				meters	(1 foot = 0.3048 meters)	
	Screened unit				(eg: sand, s		
					(og. bana, c	int day)	
QUIPME	ENT LIST						
	Slug				Bailer		
	Mass:		kilograms			lumn height:	meters
	Length:	1.0	meters		Inside dia	ameter:	meters
	Diameter:	0.0375	meters	and/or	Volume of	of water removed:	litres
	Sampling Inter	rval:			seconds	or minutes (circle one)	
INC.							
INGLE-	WELL RESPON Start time		Finish time:	19:05			
INGLE-				19:05	Co	mments	1
INGLE-	Start time	: 17-33				mments]
INGLE-	Time	: 17-33	Water Level (m)	Tx IN	20	mments CM OFF BORUM	
INGLE-	Time 17:33	: 17-33	Water Level (m)	TX IN SLUG:	20 IN		
INGLE-	Time 17:33 17:40	: 17-33	Water Level (m)	TX IN SLUG:	20 IN		
INGLE-	Time 17:33 17:35 17:40 17:45	: 17-33	Water Level (m)	TX IN SLUG: SLUG:	20 IN OUT IN		
INGLE-	Time 17:33 17:40 17:45 17:56	: 17-33	Water Level (m)	TX IN SLUG: SLUG: SLUG: SLUG:	20 IN OUT IN		
INGLE-	Time 17:33 17:35 17:40 17:45 17:56 17:55	: 17-33	Water Level (m)	TX IN SLUG: SLUG: SLUG: SLUG: SLUG:	20 IN OUT IN IN		
INGLE-	Time 17:33 17:35 17:40 17:45 17:50 17:55 18:00	: 17-33	Water Level (m)	TX IN SLUG: SLUG: SLUG: SLUG: SLUG: SLUG:	20 IP OUT IP OUT		
INGLE-	Time 17:33 17:35 17:40 17:45 17:56 17:55	: 17-33	Water Level (m)	TX IN SLUG: SLUG: SLUG: SLUG: SLUG:	20 IP OUT IP OUT		
INGLE-	Time 17:33 17:35 17:40 17:45 17:50 17:55 18:00	: 17-33	Water Level (m)	TX IN SLUG: SLUG: SLUG: SLUG: SLUG: SLUG:	20 IP OUT IP OUT		
ingle-	Time 17:33 17:35 17:40 17:45 17:50 17:55 18:00	: 17-33	Water Level (m)	TX IN SLUG: SLUG: SLUG: SLUG: SLUG: SLUG:	20 IP OUT IP OUT		
INGLE-	Time 17:33 17:35 17:40 17:45 17:50 17:55 18:00	: 17-33	Water Level (m)	TX IN SLUG: SLUG: SLUG: SLUG: SLUG: SLUG:	20 IP OUT IP OUT		
ingle-	Time 17:33 17:35 17:40 17:45 17:50 17:55 18:00	: 17-33	Water Level (m)	TX IN SLUG: SLUG: SLUG: SLUG: SLUG: SLUG:	20 IP OUT IP OUT		
INGLE-	Time 17:33 17:35 17:40 17:45 17:50 17:55 18:00	: 17-33	Water Level (m)	TX IN SLUG: SLUG: SLUG: SLUG: SLUG: SLUG:	20 IP OUT IP OUT		

APPENDIX E

Analytical Reports and Chain of Custody Forms

Results of Water Analyses - Metals [YTG Landfill Monitoring, Mayo, Yukon]

SCN			L1209363-14	L1209363-10	L1209363-11	L1209363-12	L1209363-13
Location	Aquatic Life		MA SURFACE	MA-MW12-01	MA-MW12-02	MA-MW12-03	MA-MW12-04
QA/QC	CSR-AW						
Date	(freshwater)	Notes	12-SEP-12	11-SEP-12	11-SEP-12	11-SEP-12	11-SEP-12
Parameters		Notes					
pH (field)			7.20	7.00	7.10	7 44	7.10
=			7.29	7.23	7.12	7.41	7.19
Temperature °C			8.71	2.90	3.78	3.56	2.57
Conductivity (uS/cm)			493	1116	2366	743	1001
Dissolved Oxygen (mg/L)			-	-	-	-	-
Laboratory Parameters							
pH (laboratory)			8.16	8.07	7.94	8.02	8.04
Hardness (as CaCO3)			108	229	419	191	252
total dissolved solids			145	364	4270	263	325
Aggregate Organics							
COD			<20	53	77	146	20
dissolved organic carbon			2.77	1.24	4.09	0.92	0.74
Bacteriological Coliform Bacteria - Fecal			-	-	-	-	-
D							
Dissolved Metals			0.026	<0.010	0.194	0.016	<0.010
aluminum	0.2						
antimony	0.2		<0.00050	<0.00050	0.00588	0.00847	<0.00050
arsenic	0.05		0.00225	0.00377	0.00236	0.00245	0.00306
barium	10		0.056	0.050	0.041	0.093	0.061
beryllium	0.053		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
bismuth			<0.20	<0.20	<0.20	<0.20	<0.20
boron			<0.10	<0.10	<1.0	<0.10	<1.0
cadmium	0.0001 - 0.0006	Н	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
calcium			32.4	67.3	124	59.2	75.1
chromium	$0.010^{\text{VI}}, 0.090^{\text{III}}$	V	<0.0020	< 0.0020	<0.0020	<0.0020	<0.0020
cobalt	0.009		<0.010	< 0.010	< 0.010	<0.0010	< 0.0010
copper	0.020 - 0.090	Н	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
iron			<0.030	0.597	0.221	< 0.030	0.089
lead	0.040 - 0.160	Н	<0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050
lithium			<0.010	<0.010	0.023	< 0.010	<0.010
magnesium			6.68	14.8	26.5	10.4	15.8
manganese			0.0102	0.482	0.859	0.271	0.319
mercury	0.001		<0.00020	<0.00020	< 0.00020	< 0.00020	<0.00020
molybdenum	10		<0.030	< 0.030	< 0.030	< 0.030	< 0.030
nickel	0.250 - 1.5	Н	<0.050	< 0.050	< 0.050	< 0.050	< 0.050
phosphorus			<0.30	< 0.30	< 0.30	< 0.30	< 0.30
potassium			0.50	1.77	4.10	2.50	1.76
selenium	0.01		<0.0010	<0.0010	<0.0012	<0.0010	< 0.0010
silicon			2.08	2.40	4.69	2.61	2.91
silver	0.0005 - 0.015	Н	<0.010	<0.010	<0.010	<0.010	< 0.010
sodium	0.0000 0.010		<2.0	<2.0	166.0	<2.0	<2.0
strontium			0.163	0.396	1.02	0.276	0.325
thallium	0.003		<0.20	<0.20	<0.20	<0.20	<0.20
tin	0.003		<0.030	<0.030	<0.030	< 0.030	< 0.030
titanium	1		<0.010	0.012	0.022	<0.010	0.010
uranium	3		0.00071	0.00271	0.0542	0.0190	0.00454
uranium vanadium	3		<0.030	<0.030	< 0.0342	<0.030	< 0.030
zinc	0.075 - 2.4	Н	<0.050	<0.050	<0.050	<0.050	<0.050
Other Inorganies							
Other Inorganics bicarbonate (CaCO3)			84.2	195	287	154	180
carbonate (CaCO3)			<2.0	<2.0	<1.0	<1.0	<2.0
hydroxide (CaCO3)			<2.0	<2.0	<1.0	<1.0	<2.0
total alkalinity (CaCO3)			84.2	195	287	154	180
ammonia	1.31 - 18.5	pН	<0.0050	0.0306	0.420	0.322	0.0090
bromide (free)		r	Ī				
chloride			<0.50	<0.50	5.1	<0.50	<0.50
fluoride	2 - 3	Н	0.061	0.077	0.23	0.074	0.057
nitrate (as N)	400	11	0.0553	0.0126	0.161	0.0135	0.0137
HILLAN, VAN INI							
	0.2.2	C^1	<0 0010	ZO 0010	0.050	Z(1 ()()7()	
nitrite (as N)	0.2 - 2	Cl	<0.0010	<0.0010	0.020 8 19	<0.0010 7.36	<0.0010
nitrite (as N) total Kjeldahl nitrogen sulphate	0.2 - 2	Cl	<0.0010 0.122 29.9	<0.0010 0.77 104	0.020 8.19 633	<0.0010 7.36 54.7	0.27 83.7

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Standards from the Yukon Contaminated Sites Regulation (CSR), from the Environment Act (O.I.C. 2002/171) its associated Schedules.

Land Use abbreviations: AW (Aquatic Life) and DW (Drinking Water).

 $H = standard \ is \ Hardness \ dependent$

CL = standard is chloride dependent

 $pH = standard \ is \ pH \ dependent$

V= Standard is valence dependent VI refers to chromium VI and III refers to chromium III

T = standard varies with temperature

MCS = Most Conservative Standard FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

Italics indicates standard is below detection limit.

Yellow highlight and box= Exceeds CSR freshwater aquatic life (AW) standards; AW standards assume minimum 1:10 dilution is available.

 $\label{eq:bold-exceeds} \textbf{Bold-Exceeds CSR Drinking water (DW) standard.}$

COC = Chain of Custody

Results of Water Analyses - Hydrocarbons [YTG Landfill Monitoring, Mayo, Yukon]

Location QA/QC	A susseting T iffer					
QA/QC	Aquatic Life	MA SURFACE	MA-MW12-01	MA-MW12-02	MA-MW12-03	MA-MW12-04
	CSR-AW					
Date	(freshwater)	12-SEP-12	11-SEP-12	11-SEP-12	11-SEP-12	11-SEP-12
	Notes					
Monoaromatic Hydrocarbons						
penzene	4	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
ethylbenzene	2	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
tyrene	0.72	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
oluene	0.390	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
ortho-xylene	0.390	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
neta- & para-xylene		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
otal xylene		<0.00075	< 0.00075	<0.00075	<0.00075	<0.00075
VHw ₆₋₁₀	15	<0.10	<0.10	<0.10	<0.10	<0.10
√PHw		<0.10	<0.10	<0.10	<0.10	<0.10
THW	1.5	<0.10	<0.10	<0.10	<0.10	<0.10
Polycyclic Aromatic Hydrocarbons						
cenaphthene		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
cenaphthylene		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
cridine	0.0005	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
inthracene	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
penzo(a)anthracene	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
penzo(a)pyrene	0.0001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
penzo(b)fluoranthene		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
penzo(g,h,i)perylene		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
penzo(k)fluoranthene		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
chrysene		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
libenzo(a,h)anthracene		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
luoranthene	0.002	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
luorene	0.12	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
ndeno(1,2,3-c,d)pyrene		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
naphthalene	0.01	<0.000050	<0.000050	<0.000050	0.000051	<0.000050
phenanthrene	0.003	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
pyrene	0.0002	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
quinoline	0.034	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Other Hydrocarbons						
EPHw ₁₀₋₁₉	5	<0.25	<0.25	<0.25	<0.25	<0.25
EPHw ₁₉₋₃₂		<0.25	0.51	<0.25	0.78	0.50
LEPHw	0.5	<0.25	<0.25	<0.25	<0.25	<0.25
HEPHW	0.5	<0.25	0.51	<0.25	0.78	0.50
ILTTIW		₹0.20	0.51	₹0.20	0.70	0.50
Miscellaneous Organics						
nethyl tertiary butyl ether (MTBE)		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Standards from the Yukon Contaminated Sites Regulation (CSR), from the Environment Act (O.I.C. 2002/171) its associated Schedules.

Land Use abbreviations: DW (Drinking Water) and AW (Aquatic Life).

 $FDA = field \ duplicate \ available$

 $FD = field \ duplicate$

 $QA/QC = quality\ assurance/quality\ control$

SCN = sample control number

COC = Chain of Custody

 $EPHw_{10-19} = extractable$ petroleum hydrocarbons, carbon range 10-19

 $LEPHw = light\ extractable\ petroleum\ hydrocarbons$

Where water use for the protection of aquatic life applies, the standards for $EPHw_{10-19}$ is equivalent to LEPHw, when no LEPHw analysis is undertaken.

 $VPHw = volatile\ petroleum\ hydrocarbons$

 $VHw_{6-10} = volatile hydrocarbons, carbon range 6-10$

Where water use for the protection of aquatic life applies, the standards for VHw6-10 equivalent to VPHw, when no VPHw analysis is undertaken.

PAH = polycyclic aromatic hydrocarbon

Italics indicates standard is below detection limit.

Yellow highlight and box= Exceeds CSR freshwater aquatic life (AW) standards; AW standards assume minimum 1:10 dilution is available.

GOLDER ASSOCIATES LTD.

ATTN: Andrea Badger # 201B, 170 Titanium Way Whitehorse YT Y1A 0G1 Date Received: 14-SEP-12

Report Date: 27-SEP-12 10:35 (MT)

Version: FINAL

Client Phone: 867-633-6076

Certificate of Analysis

Lab Work Order #: L1209363

Project P.O. #: NOT SUBMITTED

Job Reference: 11-1436-0073/1200,2200,2400,2700

C of C Numbers: Legal Site Desc:

ambu Springer

Amber Springer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

PAGE 2 of 20 27-SEP-12 10:35 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-1 groundwater 09-SEP-12 15:40 PC-MW12-01	L1209363-2 groundwater 10-SEP-12 10:20 PC-MW12-02	L1209363-3 groundwater 10-SEP-12 11:30 PC-MW12-03	L1209363-4 surface water 13-SEP-12 13:30 PC SURFACE	L1209363-5 groundwater 12-SEP-12 10:40 SX-MW12-01
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	5720	2500	3010	2350	681
	pH (pH)	7.83	7.93	7.87	8.13	7.78
	Total Dissolved Solids (mg/L)	8890	3970	4690	3870	1470
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	447	288	270	344	107
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<1.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<1.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	447	288	270	344	107
	Ammonia, Total (as N) (mg/L)	1.84	1.54	1.80	0.342	0.0122
	Chloride (CI) (mg/L)	109	90	105	76	431
	Fluoride (F) (mg/L)	<0.40	<0.40	<0.40	0.48	<0.20
	Nitrate (as N) (mg/L)	<0.25	<0.10	<0.10	<0.10	<0.050
	Nitrite (as N) (mg/L)	<0.050	<0.020	<0.020	<0.020	<0.010
	Total Kjeldahl Nitrogen (mg/L)	4.04	2.54	3.07	3.95	0.179
	Sulfate (SO4) (mg/L)	5840	2520	2900	2140	63.0
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	33.8	17.2	18.1	68.6	3.32
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	LAB	FIELD
	Aluminum (AI)-Dissolved (mg/L)	<0.10	<0.050	<0.050	O.050	O.050
	Antimony (Sb)-Dissolved (mg/L)	O.0050	<0.0025	<0.0025	<0.0025	<0.0025
	Arsenic (As)-Dissolved (mg/L)	0.0083	0.00855	0.00699	0.00134	0.00060
	Barium (Ba)-Dissolved (mg/L)	<0.20	<0.10	<0.10	OLA <0.10	<0.10
	Beryllium (Be)-Dissolved (mg/L)	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	O.40	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<1.0 DLA	<0.50	<0.50	<0.50	<0.50 DLA
	Cadmium (Cd)-Dissolved (mg/L)	<0.0020	<0.0010	<0.0010	<0.0010	0.0016
	Calcium (Ca)-Dissolved (mg/L)	372	213	263	278	218
	Chromium (Cr)-Dissolved (mg/L)	<0.020	<0.010	<0.010	<0.010	<0.010
	Cobalt (Co)-Dissolved (mg/L)	<0.020	<0.010	<0.010	<0.010	0.025
	Copper (Cu)-Dissolved (mg/L)	<0.010	<0.0050	<0.0050	<0.0050	O.0050
	Iron (Fe)-Dissolved (mg/L)	0.463	0.475	0.297	0.079	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.0050	<0.0025	<0.0025	<0.0025	<0.0025
	Lithium (Li)-Dissolved (mg/L)	0.025	0.021	0.035	0.031	0.021
	Magnesium (Mg)-Dissolved (mg/L)	1160	477	571	403	32.9
	Manganese (Mn)-Dissolved (mg/L)	0.691	0.377	0.400	0.042	1.28
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.060	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	<0.10 DLA	<0.050	<0.050	<0.050	0.106

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 3 of 20 27-SEP-12 10:35 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-6 groundwater 10-SEP-12 16:30 SX-MW12-02	L1209363-7 groundwater 10-SEP-12 17:45 SX-MW12-03	L1209363-8 groundwater 10-SEP-12 16:30 SX-MW12-04	L1209363-9 surface water 12-SEP-12 13:20 SX SURFACE	L1209363-10 groundwater 11-SEP-12 10:45 MA-MW12-01
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	3120	189	3040	127	229
	pH (pH)	7.70	8.05	7.78	7.90	8.07
	Total Dissolved Solids (mg/L)	6260	227	6390	160	364
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	247	198	246	120	195
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	247	198	246	120	195
	Ammonia, Total (as N) (mg/L)	<0.0050	<0.0050	<0.0050	0.0110	0.0306
	Chloride (CI) (mg/L)	2010	0.97	1970	<0.50	<0.50
	Fluoride (F) (mg/L)	<0.40	0.377	<0.40	0.193	0.077
	Nitrate (as N) (mg/L)	3.47	0.167	2.38	<0.10	0.0126
	Nitrite (as N) (mg/L)	<0.050	<0.0010	<0.0010	<0.020	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.156	0.079	0.137 TKNI	0.169	0.77
	Sulfate (SO4) (mg/L)	83	12.0	82	18.6	104
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	4.12	2.93	3.85	4.26	1.24
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	LAB	FIELD
	Aluminum (Al)-Dissolved (mg/L)	DLA <0.10	<0.010	DLA <0.10	<0.010	<0.010
	Antimony (Sb)-Dissolved (mg/L)	DLA <0.0050	<0.00050	DLA <0.0050	<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)	OLA <0.0010	0.00029	OLA <0.0010	0.00086	0.00377
	Barium (Ba)-Dissolved (mg/L)	DLA <0.20	0.021	DLA <0.20	0.094	0.050
	Beryllium (Be)-Dissolved (mg/L)	<0.010	<0.0050	OLA <0.010	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	O.40	<0.20	DLA <0.40	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<1.0	<0.10	<1.0	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.0020	<0.00020	<0.0020	<0.00020	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	1200	61.2	1170	39.6	67.3
	Chromium (Cr)-Dissolved (mg/L)	<0.020	<0.0020	<0.020	<0.0020	<0.0020
	Cobalt (Co)-Dissolved (mg/L)	<0.020	<0.010	<0.020	<0.010	<0.010
	Copper (Cu)-Dissolved (mg/L)	<0.010	<0.0010	<0.010	<0.0010	<0.0010
	Iron (Fe)-Dissolved (mg/L)	<0.060	<0.030	<0.060	0.194	0.597
	Lead (Pb)-Dissolved (mg/L)	<0.0050	<0.00050	<0.0050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	0.032	0.012	0.032	<0.010	<0.010
	Magnesium (Mg)-Dissolved (mg/L)	29.5	8.68	29.5	6.95	14.8
	Manganese (Mn)-Dissolved (mg/L)	<0.020	0.113	<0.020	0.129	0.482
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.060	<0.030	<0.060	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	<0.10 DLA	<0.050	<0.10 DLA	<0.050	<0.050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 4 of 20 27-SEP-12 10:35 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-11 groundwater 11-SEP-12 12:30 MA-MW12-02	L1209363-12 groundwater 11-SEP-12 14:15 MA-MW12-03	L1209363-13 groundwater 11-SEP-12 15:15 MA-MW12-04	L1209363-14 surface water 12-SEP-12 17:30 MA SURFACE	L1209363-15 groundwater 13-SEP-12 09:25 KE-MW12-01
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	419	191	252	108	719
	pH (pH)	7.94	8.02	8.04	8.16	7.69
	Total Dissolved Solids (mg/L)	4270	263	325	145	968
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	287	154	180	84.2	373
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<1.0	<1.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0	<1.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	287	154	180	84.2	373
	Ammonia, Total (as N) (mg/L)	0.420	0.322	0.0090	<0.0050	0.0877
	Chloride (CI) (mg/L)	5.1	<0.50	<0.50	<0.50	<5.0 DLM
	Fluoride (F) (mg/L)	0.23	0.074	0.057	0.061	<0.20
	Nitrate (as N) (mg/L)	0.161	0.0135	0.0137	0.0553	<0.050
	Nitrite (as N) (mg/L)	0.020	<0.0010	<0.0010	<0.0010	<0.010
	Total Kjeldahl Nitrogen (mg/L)	8.19	7.36	0.27	0.122	0.572
	Sulfate (SO4) (mg/L)	633	54.7	83.7	29.9	408
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	4.09	0.92	0.74	2.77	5.57
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	FIELD	FIELD	FIELD
	Aluminum (Al)-Dissolved (mg/L)	0.194	0.016	<0.010	0.026	0.058
	Antimony (Sb)-Dissolved (mg/L)	0.00588	0.00847	<0.00050	<0.00050	0.0019
	Arsenic (As)-Dissolved (mg/L)	0.00236	0.00245	0.00306	0.00225	0.00058
	Barium (Ba)-Dissolved (mg/L)	0.041	0.093	0.061	0.056	<0.040
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.20 DLA
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	0.00142
	Calcium (Ca)-Dissolved (mg/L)	124	59.2	75.1	32.4	209
	Chromium (Cr)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0040
	Cobalt (Co)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	0.076
	Copper (Cu)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0020
	Iron (Fe)-Dissolved (mg/L)	0.221	<0.030	0.089	<0.030	0.183
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.0010
	Lithium (Li)-Dissolved (mg/L)	0.023	<0.010	<0.010	<0.010	0.016
	Magnesium (Mg)-Dissolved (mg/L)	26.5	10.4	15.8	6.68	47.9
	Manganese (Mn)-Dissolved (mg/L)	0.859	0.271	0.319	0.0102	2.86
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	0.141

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1209363 CONTD.... PAGE 5 of 20

Version: FINAL

PAGE 5 of 20 27-SEP-12 10:35 (MT)

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-16 groundwater 13-SEP-12 09:55 KE-MW12-03	L1209363-17 surface water 11-SEP-12 19:15 KE SURFACE		
Grouping	Analyte				
WATER					
Physical Tests	Hardness (as CaCO3) (mg/L)	1790	95.5		
	pH (pH)	7.55	7.86		
	Total Dissolved Solids (mg/L)	2710	133		
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	408	41.1		
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0		
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0		
	Alkalinity, Total (as CaCO3) (mg/L)	408	41.1		
	Ammonia, Total (as N) (mg/L)	0.0442	0.0085		
	Chloride (CI) (mg/L)	24	0.76		
	Fluoride (F) (mg/L)	<0.40	0.058		
	Nitrate (as N) (mg/L)	<0.10	0.127		
	Nitrite (as N) (mg/L)	0.062	<0.0010		
	Total Kjeldahl Nitrogen (mg/L)	0.520	0.186		
	Sulfate (SO4) (mg/L)	1540	52.9		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	5.04	1.33		
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD		
	Aluminum (Al)-Dissolved (mg/L)	OLA <0.050	0.042		
	Antimony (Sb)-Dissolved (mg/L)	<0.000 DLA <0.0025	<0.0050		
	Arsenic (As)-Dissolved (mg/L)	0.00081	0.00090		
	Barium (Ba)-Dissolved (mg/L)	<0.10	0.052		
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050		
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20		
	Boron (B)-Dissolved (mg/L)	<0.50 DLA	<0.10		
	Cadmium (Cd)-Dissolved (mg/L)	0.0020	<0.00020		
	Calcium (Ca)-Dissolved (mg/L)	571	30.1		
	Chromium (Cr)-Dissolved (mg/L)	DLA <0.010	<0.0020		
	Cobalt (Co)-Dissolved (mg/L)	0.092	<0.010		
	Copper (Cu)-Dissolved (mg/L)	O.002 DLA <0.0050	<0.0010		
	Iron (Fe)-Dissolved (mg/L)	0.475	0.036		
	Lead (Pb)-Dissolved (mg/L)	OLA <0.0025	<0.00050		
	Lithium (Li)-Dissolved (mg/L)	0.071	<0.010		
	Magnesium (Mg)-Dissolved (mg/L)	88.8	4.95		
	Manganese (Mn)-Dissolved (mg/L)	4.20	0.0047		
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020		
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030		
	Nickel (Ni)-Dissolved (mg/L)	0.277	<0.050		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 6 of 20 27-SEP-12 10:35 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-1 groundwater 09-SEP-12 15:40 PC-MW12-01	L1209363-2 groundwater 10-SEP-12 10:20 PC-MW12-02	L1209363-3 groundwater 10-SEP-12 11:30 PC-MW12-03	L1209363-4 surface water 13-SEP-12 13:30 PC SURFACE	L1209363-5 groundwater 12-SEP-12 10:40 SX-MW12-01
Grouping	Analyte					
WATER						
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	O.60	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	27.5	28.2	32.7	15.3	2.76
	Selenium (Se)-Dissolved (mg/L)	OLA <0.010	O.0050	OLA <0.0050	OLA <0.0050	OLA <0.0050
	Silicon (Si)-Dissolved (mg/L)	6.37	6.51	7.69	8.51	4.83
	Silver (Ag)-Dissolved (mg/L)	<0.020	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	231	113	125	103	21.8
	Strontium (Sr)-Dissolved (mg/L)	4.06	2.20	2.84	1.49	0.837
	Thallium (TI)-Dissolved (mg/L)	<0.40	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.060	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	<0.020	0.018	0.020	0.020	0.018
	Uranium (U)-Dissolved (mg/L)	0.0639	0.00731	0.00886	0.203	0.0267
	Vanadium (V)-Dissolved (mg/L)	<0.060	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	OLA <0.50	<0.25	OLA <0.25	DLA <0.25	<0.25
Aggregate Organics	COD (mg/L)	123	56	81	218	52
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 7 of 20 27-SEP-12 10:35 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-6 groundwater 10-SEP-12 16:30 SX-MW12-02	L1209363-7 groundwater 10-SEP-12 17:45 SX-MW12-03	L1209363-8 groundwater 10-SEP-12 16:30 SX-MW12-04	L1209363-9 surface water 12-SEP-12 13:20 SX SURFACE	L1209363-10 groundwater 11-SEP-12 10:45 MA-MW12-01
Grouping	Analyte					
WATER						
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	DLA <0.60	<0.30	OLA <0.60	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	1.2	0.49	1.3	1.09	1.77
	Selenium (Se)-Dissolved (mg/L)	DLA <0.010	<0.0010	O.010	<0.0010	<0.0010
	Silicon (Si)-Dissolved (mg/L)	4.80	4.93	4.84	4.08	2.40
	Silver (Ag)-Dissolved (mg/L)	<0.020	<0.010	<0.020	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	32.3	6.6	32.8	2.4	<2.0
	Strontium (Sr)-Dissolved (mg/L)	2.10	0.215	2.17	0.206	0.396
	Thallium (TI)-Dissolved (mg/L)	<0.40	<0.20	<0.40	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.060	<0.030	<0.060	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	<0.020	<0.010	<0.020	<0.010	0.012
	Uranium (U)-Dissolved (mg/L)	0.204	0.0180	0.196	0.00086	0.00271
	Vanadium (V)-Dissolved (mg/L)	O.060	<0.030	<0.060	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	O.50	<0.050	<0.50	<0.050	<0.050
Aggregate Organics	COD (mg/L)	81	<20	88	<20	53
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 8 of 20 27-SEP-12 10:35 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-11 groundwater 11-SEP-12 12:30 MA-MW12-02	L1209363-12 groundwater 11-SEP-12 14:15 MA-MW12-03	L1209363-13 groundwater 11-SEP-12 15:15 MA-MW12-04	L1209363-14 surface water 12-SEP-12 17:30 MA SURFACE	L1209363-15 groundwater 13-SEP-12 09:25 KE-MW12-01
Grouping	Analyte					
WATER						
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	4.10	2.50	1.76	0.50	1.52
	Selenium (Se)-Dissolved (mg/L)	0.0012	<0.0010	<0.0010	<0.0010	OLA <0.0020
	Silicon (Si)-Dissolved (mg/L)	4.69	2.61	2.91	2.08	5.77
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	166	<2.0	<2.0	<2.0	5.4
	Strontium (Sr)-Dissolved (mg/L)	1.02	0.276	0.325	0.163	0.510
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	0.022	<0.010	0.010	<0.010	0.029
	Uranium (U)-Dissolved (mg/L)	0.0542	0.0190	0.00454	0.00071	0.00232
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	OLA <0.10
Aggregate Organics	COD (mg/L)	77	146	20	<20	47
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Version: FINAL

PAGE 9 of 20 27-SEP-12 10:35 (MT)

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-16 groundwater 13-SEP-12 09:55 KE-MW12-03	L1209363-17 surface water 11-SEP-12 19:15 KE SURFACE		
Grouping	Analyte				
WATER					
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30		
	Potassium (K)-Dissolved (mg/L)	17.2	0.18		
	Selenium (Se)-Dissolved (mg/L)	0.0336	<0.0010		
	Silicon (Si)-Dissolved (mg/L)	9.32	2.92		
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010		
	Sodium (Na)-Dissolved (mg/L)	26.9	<2.0		
	Strontium (Sr)-Dissolved (mg/L)	1.69	0.0880		
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20		
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030		
	Titanium (Ti)-Dissolved (mg/L)	0.056	<0.010		
	Uranium (U)-Dissolved (mg/L)	0.0412	0.00022		
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030		
	Zinc (Zn)-Dissolved (mg/L)	<0.25	<0.050		
Aggregate Organics	COD (mg/L)	42	<20		
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050		
	Bromodichloromethane (mg/L)	<0.0010	<0.0010		
	Bromoform (mg/L)	<0.0010	<0.0010		
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050		
	Chlorobenzene (mg/L)	<0.0010	<0.0010		
	Dibromochloromethane (mg/L)	<0.0010	<0.0010		
	Chloroethane (mg/L)	<0.0010	<0.0010		
	Chloroform (mg/L)	<0.0010	<0.0010		
	Chloromethane (mg/L)	<0.0050	<0.0050		
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070		
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010		
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010		
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010		
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010		
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010		
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010		
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010		
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014		
	Dichloromethane (mg/L)	<0.0050	<0.0050		
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010		
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010		
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 10 of 20 27-SEP-12 10:35 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-1 groundwater 09-SEP-12 15:40 PC-MW12-01	L1209363-2 groundwater 10-SEP-12 10:20 PC-MW12-02	L1209363-3 groundwater 10-SEP-12 11:30 PC-MW12-03	L1209363-4 surface water 13-SEP-12 13:30 PC SURFACE	L1209363-5 groundwater 12-SEP-12 10:40 SX-MW12-01
Grouping	Analyte					
WATER						
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	77.8	79.3	80.7	79.6	79.1
	Surrogate: 1,4-Difluorobenzene (SS) (%)	83.2	83.0	82.5	83.1	82.9
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25	<0.25	0.47	<0.25
	EPH19-32 (mg/L)	<0.25	<0.25	<0.25	0.54	<0.25
	LEPH (mg/L)	<0.25	<0.25	<0.25	0.47	<0.25
	HEPH (mg/L)	<0.25	<0.25	<0.25	0.54	<0.25
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	SURR- ND 69.0	80.1	76.0	81.9	85.7
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000070	<0.000050
	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010	<0.00010	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 11 of 20 27-SEP-12 10:35 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-6 groundwater 10-SEP-12 16:30 SX-MW12-02	L1209363-7 groundwater 10-SEP-12 17:45 SX-MW12-03	L1209363-8 groundwater 10-SEP-12 16:30 SX-MW12-04	L1209363-9 surface water 12-SEP-12 13:20 SX SURFACE	L1209363-10 groundwater 11-SEP-12 10:45 MA-MW12-01
Grouping	Analyte					
WATER						
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	0.00148	<0.00050	0.00148	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	0.0011	<0.0010	0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	77.1	77.8	78.2	76.2	78.6
	Surrogate: 1,4-Difluorobenzene (SS) (%)	82.9	83.0	83.3	83.1	83.5
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	EPH19-32 (mg/L)	<0.25	<0.25	<0.25	<0.25	0.51
	LEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	HEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	0.51
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	78.8	77.7	77.7	70.5	76.5
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.00050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010	<0.00010	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 12 of 20 27-SEP-12 10:35 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-11 groundwater 11-SEP-12 12:30 MA-MW12-02	L1209363-12 groundwater 11-SEP-12 14:15 MA-MW12-03	L1209363-13 groundwater 11-SEP-12 15:15 MA-MW12-04	L1209363-14 surface water 12-SEP-12 17:30 MA SURFACE	L1209363-15 groundwater 13-SEP-12 09:25 KE-MW12-01
Grouping	Analyte					
WATER						
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	78.2	79.6	79.7	78.1	78.8
	Surrogate: 1,4-Difluorobenzene (SS) (%)	83.0	83.2	83.1	83.1	83.6
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	EPH19-32 (mg/L)	<0.25	0.78	0.50	<0.25	0.54
	LEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	HEPH (mg/L)	<0.25	0.78	0.50	<0.25	0.54
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	71.3	83.0	75.8	78.8	75.4
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1209363 CONTD.... PAGE 13 of 20

27-SEP-12 10:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-16 groundwater 13-SEP-12 09:55 KE-MW12-03	L1209363-17 surface water 11-SEP-12 19:15 KE SURFACE		
Grouping	Analyte				
WATER					
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050		
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050		
	Styrene (mg/L)	<0.00050	<0.00050		
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010		
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010		
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010		
	Toluene (mg/L)	0.00159	<0.00050		
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010		
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010		
	Trichloroethylene (mg/L)	<0.0010	<0.0010		
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010		
	Vinyl Chloride (mg/L)	<0.0010	<0.0010		
	ortho-Xylene (mg/L)	<0.00050	<0.00050		
	meta- & para-Xylene (mg/L)	0.00063	<0.00050		
	Xylenes (mg/L)	<0.00075	<0.00075		
	Surrogate: 4-Bromofluorobenzene (SS) (%)	78.3	79.8		
	Surrogate: 1,4-Difluorobenzene (SS) (%)	81.9	82.8		
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25		
	EPH19-32 (mg/L)	<0.25	<0.25		
	LEPH (mg/L)	<0.25	<0.25		
	HEPH (mg/L)	<0.25	<0.25		
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10		
	VPH (C6-C10) (mg/L)	<0.10	<0.10		
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	73.8	81.8		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050		
	Acenaphthylene (mg/L)	<0.000050	<0.000050		
	Acridine (mg/L)	<0.000050	<0.000050		
	Anthracene (mg/L)	<0.000050	<0.000050		
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050		
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000010		
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050		
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050		
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050		
	Chrysene (mg/L)	<0.000050	<0.000050		
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 14 of 20 27-SEP-12 10:35 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-1 groundwater 09-SEP-12 15:40 PC-MW12-01	L1209363-2 groundwater 10-SEP-12 10:20 PC-MW12-02	L1209363-3 groundwater 10-SEP-12 11:30 PC-MW12-03	L1209363-4 surface water 13-SEP-12 13:30 PC SURFACE	L1209363-5 groundwater 12-SEP-12 10:40 SX-MW12-01
Grouping	Analyte					
WATER						
Polycyclic Aromatic Hydrocarbons	Fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Fluorene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Naphthalene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Phenanthrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Pyrene (mg/L)	0.000098	<0.000050	<0.000050	<0.000050	<0.000050
	Quinoline (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Surrogate: Acenaphthene d10 (%)	86.1	91.8	93.5	102.1	94.4
	Surrogate: Acridine d9 (%)	89.4	96.4	97.1	103.3	101.1
	Surrogate: Chrysene d12 (%)	80.2	87.6	86.6	83.0	85.4
	Surrogate: Naphthalene d8 (%)	90.2	93.6	91.6	98.4	94.4
	Surrogate: Phenanthrene d10 (%)	88.9	93.4	95.9	95.0	96.3

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 15 of 20 27-SEP-12 10:35 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-6 groundwater 10-SEP-12 16:30 SX-MW12-02	L1209363-7 groundwater 10-SEP-12 17:45 SX-MW12-03	L1209363-8 groundwater 10-SEP-12 16:30 SX-MW12-04	L1209363-9 surface water 12-SEP-12 13:20 SX SURFACE	L1209363-10 groundwater 11-SEP-12 10:45 MA-MW12-01
Grouping	Analyte					
WATER						
Polycyclic Aromatic Hydrocarbons	Fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Fluorene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Naphthalene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Phenanthrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Quinoline (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Surrogate: Acenaphthene d10 (%)	99.8	90.1	90.2	95.7	94.4
	Surrogate: Acridine d9 (%)	106.9	95.4	94.6	100.1	93.6
	Surrogate: Chrysene d12 (%)	93.7	85.2	85.5	89.5	86.4
	Surrogate: Naphthalene d8 (%)	100.7	90.3	89.7	95.2	93.9
	Surrogate: Phenanthrene d10 (%)	103.0	92.2	91.2	97.9	95.4

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 16 of 20 27-SEP-12 10:35 (MT)

Version: FINAL

Analyte Fluoranthene (mg/L) Fluorene (mg/L) ndeno(1,2,3-c,d)pyrene (mg/L) Naphthalene (mg/L) Phenanthrene (mg/L) Pyrene (mg/L)	<0.000050 <0.000050 <0.000050 <0.000050	<0.000050 <0.000050 <0.000050	<0.000050	<0.000050 <0.000050	<0.000050
Fluorene (mg/L) ndeno(1,2,3-c,d)pyrene (mg/L) Naphthalene (mg/L) Phenanthrene (mg/L)	<0.000050 <0.000050 <0.000050	<0.000050 <0.000050	<0.000050		<0.000050
Fluorene (mg/L) ndeno(1,2,3-c,d)pyrene (mg/L) Naphthalene (mg/L) Phenanthrene (mg/L)	<0.000050 <0.000050 <0.000050	<0.000050 <0.000050	<0.000050		<0.000050
ndeno(1,2,3-c,d)pyrene (mg/L) Naphthalene (mg/L) Phenanthrene (mg/L)	<0.000050 <0.000050	<0.000050		40 0000E0	
Naphthalene (mg/L) Phenanthrene (mg/L)	<0.000050		-0.000050	<0.000050	<0.000050
Phenanthrene (mg/L)			<0.000050	<0.000050	<0.000050
		0.000051	<0.000050	<0.000050	0.000059
Pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Quinoline (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Surrogate: Acenaphthene d10 (%)	89.7	89.6	98.3	92.0	104.8
Surrogate: Acridine d9 (%)	96.3	90.7	99.3	97.7	101.0
Surrogate: Chrysene d12 (%)	86.7	75.9	89.1	78.7	87.4
Surrogate: Naphthalene d8 (%)	89.8	88.9	97.8	92.5	88.0
Surrogate: Phenanthrene d10 (%)	92.3	91.3	99.6	93.7	96.5
S	urrogate: Chrysene d12 (%) urrogate: Naphthalene d8 (%)	surrogate: Chrysene d12 (%) 86.7 surrogate: Naphthalene d8 (%) 89.8	Furrogate: Chrysene d12 (%) 86.7 75.9 Furrogate: Naphthalene d8 (%) 89.8 88.9	turrogate: Chrysene d12 (%) 86.7 75.9 89.1 89.8 88.9 97.8	Furrogate: Chrysene d12 (%) 86.7 75.9 89.1 78.7 Furrogate: Naphthalene d8 (%) 89.8 88.9 97.8 92.5

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 17 of 20 27-SEP-12 10:35 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-16 groundwater 13-SEP-12 09:55 KE-MW12-03	L1209363-17 surface water 11-SEP-12 19:15 KE SURFACE		
Grouping	Analyte				
WATER					
Polycyclic Aromatic Hydrocarbons	Fluoranthene (mg/L)	<0.000050	<0.000050		
	Fluorene (mg/L)	<0.000050	<0.000050		
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.000050		
	Naphthalene (mg/L)	0.000065	<0.000050		
	Phenanthrene (mg/L)	<0.000050	<0.000050		
	Pyrene (mg/L)	<0.000050	<0.000050		
	Quinoline (mg/L)	<0.000050	<0.000050		
	Surrogate: Acenaphthene d10 (%)	106.9	89.3		
	Surrogate: Acridine d9 (%)	91.2	87.3		
	Surrogate: Chrysene d12 (%)	78.1	75.5		
	Surrogate: Naphthalene d8 (%)	88.8	89.6		
	Surrogate: Phenanthrene d10 (%)	88.4	88.3		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1209363 CONTD.... PAGE 18 of 20 27-SEP-12 10:35 (MT)

27-SEP-12 10:35 (MT) Version: FINAL

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Duplicate	Nitrite (as N)	DLA	L1209363-1, -10, -11, -12, -13, -14, -15, -16, -17, -2, -3, -4, -5, -6, -7, -8, -9
Duplicate	Nitrate (as N)	DLA	L1209363-1, -10, -11, -12, -13, -14, -15, -16, -17, -2, -3, -4, -5, -6, -7, -8, -9
Duplicate	Aluminum (Al)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Boron (B)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Cadmium (Cd)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Chromium (Cr)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Copper (Cu)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Lead (Pb)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Selenium (Se)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Zinc (Zn)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Fluoride (F)	DLM	L1209363-1, -10, -11, -12, -13, -14, -15, -16, -17, -2, -3, -4, -5, -6, -7, -8, -9
Method Blank	Manganese (Mn)-Dissolved	MB-LOR	L1209363-11, -12, -4, -9
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Matrix Spike	Potassium (K)-Dissolved	MS-B	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Matrix Spike	Uranium (U)-Dissolved	MS-B	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLA	Detection Limit Adjusted For required dilution
DLM	Detection Limit Adjusted For Sample Matrix Effects
MB-LOR	Method Blank exceeds ALS DQO. LORs adjusted for samples with positive hits below 5 times blank level. Please contact ALS if reanalysis is required.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
SURR-ND	Surrogate recovery was slightly outside ALS DQO. Reported non-detect results for associated samples were unaffected.
TKNI	TKN result is likely biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 "Alkalinity"

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

ALK-PCT-VA Water Alkalinity by Auto. Titration APHA 2320 Alkalinit

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

ALK-SCR-VA Water Alkalinity by colour or titration EPA 310.2 OR APHA 2320

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

ANIONS-CL-IC-VA Water Chloride by Ion Chromatography APHA 4110 B.

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography".

ANIONS-F-IC-VA Water Fluoride by Ion Chromatography APHA 4110 B.

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography".

ANIONS-NO2-IC-WR Water Nitrite Nitrogen by Ion Chromatography EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003. Nitrate is detected by UV absorbance.

Reference Information

L1209363 CONTD....

PAGE 19 of 20

27-SEP-12 10:35 (MT)

Version: FINAL

ANIONS-NO3-IC-WR Water Nitrate Nitrogen by Ion Chromatography EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003. Nitrate is detected by UV absorbance.

ANIONS-SO4-IC-VA

Water

Sulfate by Ion Chromatography

APHA 4110 B.

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography".

CARBONS-DOC-VA

Water

Dissolved organic carbon by combustion

APHA 5310 TOTAL ORGANIC CARBON (TOC)

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are determined by filtering the sample through a 0.45 micron membrane filter prior to analysis.

COD-COL-VA

Water

Chemical Oxygen Demand by Colorimetric

APHA 5220 D. CHEMICAL OXYGEN DEMAND

This analysis is carried out using procedures adapted from APHA Method 5220 "Chemical Oxygen Demand (COD)". Chemical oxygen demand is determined using the closed reflux colourimetric method.

EPH-SF-FID-VA

Water

EPH in Water by GCFID

BCMOE EPH GCFID

This analysis is carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Extractable Petroleum Hydrocarbons in Water by GC/FID" (Version 2.1, July 1999). The procedure involves extraction of the entire water sample with dichloromethane. The extract is then solvent exchanged to toluene and analysed by capillary column gas chromatography with flame ionization detection (GC/FID). EPH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not equivalent to Light and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH).

HARDNESS-CALC-VA

Water

Hardness

APHA 2340B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-DIS-CVAFS-VA

Water

Dissolved Mercury in Water by CVAFS

EPA SW-846 3005A & EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

LEPH/HEPH-CALC-VA

Water

LEPHs and HEPHs

BC MOE LABORATORY MANUAL (2005)

Light and Heavy Extractable Petroleum Hydrocarbons in water. These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Light and Heavy Extractable Petroleum Hydrocarbons in Solids or Water". According to this method, LEPH and HEPH are calculated by subtracting selected Polycyclic Aromatic Hydrocarbon results from Extractable Petroleum Hydrocarbon results. To calculate LEPH, the individual results for Acenaphthene, Acridine, Anthracene, Fluorene, Naphthalene and Phenanthrene are subtracted from EPH(C10-19). To calculate HEPH, the individual results for Benz(a)anthracene, Benzo(a)pyrene, Fluoranthene, and Pyrene are subtracted from EPH(C19-32). Analysis of Extractable Petroleum Hydrocarbons adheres to all prescribed elements of the BCMELP method "Extractable Petroleum Hydrocarbons in Water by GC/FID" (Version 2.1, July 20, 1999).

MET-DIS-ICP-VA

Water

Dissolved Metals in Water by ICPOES

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-LOW-MS-VA

Water

Dissolved Metals in Water by ICPMS(Low)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-F-VA

Water

Ammonia in Water by Fluorescence

J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

PAH-SF-MS-VA

Water

PAH in Water by GCMS

EPA 3510, 8270

The entire water sample is extracted with dichloromethane, prior to analysis by gas chromatography with mass spectrometric detection (GC/MS). Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PAH-SURR-MS-VA

Water

PAH Surrogates for Waters

EPA 3510, 8270

Analysed as per the corresponding PAH test method. Known quantities of surrogate compounds are added prior to analysis to each sample to demonstrate analytical accuracy.

PH-PCT-VA

Wate

pH by Meter (Automated)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

Reference Information

PAGE 20 of 20 27-SEP-12 10:35 (MT)

L1209363 CONTD....

Version: FINΔI

B.C. MIN. OF ENV. LAB. MAN. (2009)

It is recommended that this analysis be conducted in the field.

PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H pH Value

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH

electrode

VH-SURR-FID-VA

It is recommended that this analysis be conducted in the field.

Water

TDS-VA Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TKN-F-VA Water TKN in Water by Fluorescence APHA 4500-NORG D.

This analysis is carried out using procedures adapted from APHA Method 4500-Norg D. "Block Digestion and Flow Injection Analysis". Total Kjeldahl

Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection.

VH in Water by Headspace GCFID B.C. MIN. OF ENV. LAB. MAN. (2009)

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph.

Compounds eluting between n-hexane and n-decane are measured and summed together using flame-ionization detection.

VH Surrogates for Waters **VOC-HSMS-VA** Water VOCs in water by Headspace GCMS EPA8260B, 5021

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph.

Target compound concentrations are measured using mass spectrometry detection.

BTEX/MTBE/Styrene by Headspace GCMS FPA8260B 5021

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph.

Target compound concentrations are measured using mass spectrometry detection.

VOC7/VOC-SURR-MS-VA VOC7 and/or VOC Surrogates for Waters Water EPA8260B, 5021

VPH-CALC-VA Water VPH is VH minus select aromatics BC MOE LABORATORY MANUAL (2005)

These results are determined according to the British Columbia Ministry of Environment Analytical Method for Contaminated Sites "Calculation of Volatile Petroleum Hydrocarbons in Solids or Water". The concentrations of specific Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene, Xylenes and, in solids, Styrene) are subtracted from the collective concentration of Volatile Hydrocarbons (VH) that elute between nhexane (nC6) and n-decane (nC10).

XYLENES-CALC-VA Water Sum of Xylene Isomer Concentrations **CALCULATION**

Calculation of Total Xvlenes

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WR ALS ENVIRONMENTAL - WHITEHORSE, YUKON, CANADA

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1209363 Report Date: 27-SEP-12 Page 1 of 37

Client: GOLDER ASSOCIATES LTD.

201B, 170 Titanium Way Whitehorse YT Y1A 0G1

Contact: Andrea Badger

Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-PCT-VA Water							
Batch R2440917							
WG1551094-10 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PC	T-CONTROL 105.2		%		85-115	21-SEP-12
WG1551094-11 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PC	T-CONTROL 102.5		%		85-115	21-SEP-12
WG1551094-12 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PC	T-CONTROL 105.5		%		85-115	21-SEP-12
WG1551094-13 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PC	T-CONTROL 105.2		%		85-115	21-SEP-12
WG1551094-14 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PC	T-CONTROL 103.6		%		85-115	21-SEP-12
WG1551094-15 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PC	T-CONTROL 103.8		%		85-115	21-SEP-12
WG1551094-16 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PC	T-CONTROL 106.1		%		85-115	21-SEP-12
WG1551094-9 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PC	T-CONTROL 107.8		%		85-115	21-SEP-12
WG1551094-34 DUP Alkalinity, Total (as CaCO3)	L1209363-1 154	2 155		mg/L	0.2	20	21-SEP-12
Alkalinity, Bicarbonate (as CaCO	3) 154	155		mg/L	0.2	20	21-SEP-12
Alkalinity, Carbonate (as CaCO3)	<1.0	<1.0	RPD-NA	mg/L	N/A	25	21-SEP-12
Alkalinity, Hydroxide (as CaCO3)	<1.0	<1.0	RPD-NA	mg/L	N/A	20	21-SEP-12
WG1551094-2 MB							
Alkalinity, Total (as CaCO3)		<1.0		mg/L		1	21-SEP-12
Alkalinity, Bicarbonate (as CaCO	3)	<1.0		mg/L		1	21-SEP-12
Alkalinity, Carbonate (as CaCO3))	<1.0		mg/L		1	21-SEP-12
Alkalinity, Hydroxide (as CaCO3)		<1.0		mg/L		1	21-SEP-12
WG1551094-4 MB Alkalinity, Total (as CaCO3)		<1.0		ma/l		4	04.050.40
Alkalinity, Bicarbonate (as CaCO)	3/	<1.0 <1.0		mg/L mg/L		1	21-SEP-12
Alkalinity, Carbonate (as CaCO3)	,	<1.0		mg/L		1	21-SEP-12
Alkalinity, Hydroxide (as CaCO3)		<1.0		mg/L		1	21-SEP-12
WG1551094-5 MB		<1.0		mg/L		1	21-SEP-12
Alkalinity, Total (as CaCO3)		<1.0		mg/L		1	21-SEP-12
Alkalinity, Bicarbonate (as CaCO	3)	<1.0		mg/L		1	21-SEP-12
Alkalinity, Carbonate (as CaCO3))	<1.0		mg/L		1	21-SEP-12
Alkalinity, Hydroxide (as CaCO3)		<1.0		mg/L		1	21-SEP-12
WG1551094-6 MB							
Alkalinity, Total (as CaCO3)		<1.0		mg/L		1	21-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 2 of 37

	•	1 ago 2				
Reference Result	Qualifier Units	RPD	Limit	Analyzed		
<1.0	mg/L		1	21-SEP-12		
<1.0	mg/L		1	21-SEP-12		
<1.0	mg/L		1	21-SEP-12		
4.0						
	•			21-SEP-12		
	_			21-SEP-12		
	•		1	21-SEP-12		
<1.0	mg/L		1	21-SEP-12		
VA-ALK-PCT-CONTROL 104.1	%		85-115	25-SEP-12		
VA-ALK-PCT-CONTROL 104.3	%		85-115	25-SEP-12		
VA-ALK-PCT-CONTROL 104.1	%		85-115	25-SEP-12		
VA-ALK-PCT-CONTROL						
102.9	%		85-115	25-SEP-12		
VA-ALK-PCT-CONTROL						
102.5	%		85-115	25-SEP-12		
VA-ALK-PCT-CONTROL						
105.2	%		85-115	25-SEP-12		
VA-ALK-PCT-CONTROL 102.1	%		85-115	25-SEP-12		
VA-ALK-PCT-CONTROL						
104.5	%		85-115	25-SEP-12		
<1.0	mg/L		1	25-SEP-12		
<1.0	mg/L		1	25-SEP-12		
<1.0	mg/L		1	25-SEP-12		
<1.0	mg/L		1	25-SEP-12		
VA-ALKL-CONTROL	2/					
97.4	%		85-115	20-SEP-12		
VA-ALKM-CONTROL 106.3	%		85-115	20-SEP-12		
	,•		00-110	20 OLI - 12		
L1209363-10						
	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0	Indicate	Reference Result Qualifier Units RPD Limit		

Workorder: L1209363 Report Date: 27-SEP-12 Page 3 of 37

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-SCR-VA	Water							
Batch R244 WG1550572-10 Alkalinity, Total (a		L1209363-10 195	194		mg/L	0.4	20	20-SEP-12
	МВ		<2.0		mg/L		2	20-SEP-12
WG1550572-4 Alkalinity, Total (a	MB as CaCO3)		<2.0		mg/L		2	20-SEP-12
WG1550572-7 Alkalinity, Total (a	MB as CaCO3)		<2.0		mg/L		2	20-SEP-12
ANIONS-CL-IC-VA	Water							
	39735							
WG1549122-3 Chloride (CI)	DUP	L1209363-12 <0.50	<0.50	RPD-NA	mg/L	N/A	20	19-SEP-12
WG1549122-15 Chloride (Cl)	LCS		97.9		%		85-115	19-SEP-12
WG1549122-2 Chloride (Cl)	LCS		97.8		%		85-115	19-SEP-12
WG1549122-1 Chloride (Cl)	МВ		<0.50		mg/L		0.5	19-SEP-12
WG1549122-10 Chloride (CI)	МВ		<0.50		mg/L		0.5	19-SEP-12
WG1549122-13 Chloride (Cl)	МВ		<0.50		mg/L		0.5	19-SEP-12
WG1549122-4 Chloride (Cl)	МВ		<0.50		mg/L		0.5	19-SEP-12
WG1549122-7 Chloride (Cl)	МВ		<0.50		mg/L		0.5	19-SEP-12
WG1549122-11 Chloride (Cl)	MS	L1209564-7	101.1		%		75-125	19-SEP-12
WG1549122-14 Chloride (CI)	MS	L1209704-1	100.7		%		75-125	19-SEP-12
WG1549122-5 Chloride (Cl)	MS	L1209363-7	100.5		%		75-125	19-SEP-12
, ,	MS	L1209433-3	100.5		%		75-125	19-SEP-12
ANIONS-F-IC-VA	Water		-					.0 021 12

Workorder: L1209363 Report Date: 27-SEP-12

Page 4 of 37

Test Matrix Reference Result Qualifier Units **RPD** Limit Analyzed ANIONS-F-IC-VA Water Batch R2439735 WG1549122-3 DUP L1209363-12 Fluoride (F) 0.074 0.074 mg/L 0.0 20 19-SEP-12 WG1549122-15 LCS Fluoride (F) 101.9 % 85-115 19-SEP-12 WG1549122-2 LCS Fluoride (F) 101.6 % 85-115 19-SEP-12 WG1549122-1 Fluoride (F) < 0.020 mg/L 0.02 19-SEP-12 WG1549122-10 MB Fluoride (F) < 0.020 mg/L 0.02 19-SEP-12 WG1549122-13 MB Fluoride (F) < 0.020 mg/L 0.02 19-SEP-12 WG1549122-4 MB Fluoride (F) < 0.020 mg/L 0.02 19-SEP-12 WG1549122-7 < 0.020 Fluoride (F) mg/L 0.02 19-SEP-12 WG1549122-11 MS L1209564-7 Fluoride (F) 100.4 % 75-125 19-SEP-12 WG1549122-14 MS L1209704-1 Fluoride (F) 104.6 % 75-125 19-SEP-12 WG1549122-5 MS L1209363-7 Fluoride (F) 100.5 % 75-125 19-SEP-12 WG1549122-8 MS L1209433-3 Fluoride (F) 104.0 % 75-125 19-SEP-12 ANIONS-NO2-IC-WR Water Batch R2439214 WG1549682-3 DUP L1209363-1 Nitrite (as N) < 0.050 < 0.050 RPD-NA mg/L N/A 20 14-SEP-12 WG1549682-2 LCS Nitrite (as N) 104.8 % 85-115 14-SEP-12 WG1549682-6 LCS Nitrite (as N) 104.0 % 85-115 14-SEP-12 WG1549682-1 MB Nitrite (as N) < 0.0010 mg/L 0.001 14-SEP-12 WG1549682-5 MB Nitrite (as N) < 0.0010 mg/L 0.001 14-SEP-12 WG1549682-4 MS L1209363-7 Nitrite (as N) 97.1 % 75-125 14-SEP-12 WG1549682-8 MS L1209430-2

Workorder: L1209363 Report Date: 27-SEP-12 Page 5 of 37

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-NO2-IC-WF	R 139214	Water							
WG1549682-8 Nitrite (as N)	MS		L1209430-2	102.8		%		75-125	14-SEP-12
ANIONS-NO3-IC-WE	R	Water							
	139214								
WG1549682-3 Nitrate (as N)	DUP		L1209363-1 <0.25	<0.25	RPD-NA	mg/L	N/A	20	14-SEP-12
WG1549682-2 Nitrate (as N)	LCS			104.2		%		85-115	14-SEP-12
WG1549682-6 Nitrate (as N)	LCS			104.5		%		85-115	14-SEP-12
WG1549682-1 Nitrate (as N)	MB			<0.0050		mg/L		0.005	14-SEP-12
WG1549682-5 Nitrate (as N)	MB			<0.0050		mg/L		0.005	14-SEP-12
WG1549682-4 Nitrate (as N)	MS		L1209363-7	99.6		%		75-125	14-SEP-12
WG1549682-8 Nitrate (as N)	MS		L1209430-2	100.7		%		75-125	14-SEP-12
ANIONS-SO4-IC-VA		Water							
	139735								
WG1549122-3 Sulfate (SO4)	DUP		L1209363-12 54.7	54.7		mg/L	0.0	20	19-SEP-12
WG1549122-15 Sulfate (SO4)	LCS			101.1		%		85-115	19-SEP-12
WG1549122-2 Sulfate (SO4)	LCS			100.9		%		85-115	19-SEP-12
WG1549122-1 Sulfate (SO4)	MB			<0.50		mg/L		0.5	19-SEP-12
WG1549122-10 Sulfate (SO4)	MB			<0.50		mg/L		0.5	19-SEP-12
WG1549122-13 Sulfate (SO4)	MB			<0.50		mg/L		0.5	19-SEP-12
WG1549122-4 Sulfate (SO4)	MB			<0.50		mg/L		0.5	19-SEP-12
WG1549122-7 Sulfate (SO4)	МВ			<0.50		mg/L		0.5	19-SEP-12
WG1549122-11	MS		L1209564-7	-		<i>3</i> -		0.0	10 021 12

Workorder: L1209363 Report Date: 27-SEP-12 Page 6 of 37

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-SO4-IC-VA	Water							
Batch R24397	35							
WG1549122-11 MS Sulfate (SO4)	•	L1209564-7	102.9		%		75-125	19-SEP-12
WG1549122-14 MS Sulfate (SO4)	•	L1209704-1	102.5		%		75-125	19-SEP-12
WG1549122-5 MS Sulfate (SO4)	•	L1209363-7	101.2		%		75-125	19-SEP-12
WG1549122-8 MS Sulfate (SO4)	•	L1209433-3	97.9		%		75-125	19-SEP-12
CARBONS-DOC-VA	Water							
Batch R24391	16							
WG1549198-2 CR Dissolved Organic C		VA-DOC-C-CA	FFEINE 100.2		%		80-120	18-SEP-12
WG1549198-4 CR Dissolved Organic C		VA-DOC-C-CA	FFEINE 98.0		%		80-120	18-SEP-12
WG1549198-1 MB Dissolved Organic C			<0.50		mg/L		0.5	18-SEP-12
WG1549198-3 MB Dissolved Organic C			<0.50		mg/L		0.5	18-SEP-12
WG1549198-7 MS Dissolved Organic C		L1209483-3	90.6		%		70-130	18-SEP-12
Batch R24391	95							
WG1548363-10 CR Dissolved Organic Ca	M	VA-DOC-C-CA	FFEINE 97.7		%		80-120	17-SEP-12
WG1548363-2 CR Dissolved Organic C		VA-DOC-C-CA	FFEINE 99.5		%		80-120	17-SEP-12
WG1548363-4 CR Dissolved Organic C		VA-DOC-C-CA	FFEINE 94.2		%		80-120	17-SEP-12
WG1548363-6 CR Dissolved Organic Ca		VA-DOC-C-CA	FFEINE 95.6		%		80-120	17-SEP-12
WG1548363-8 CR Dissolved Organic Ca		VA-DOC-C-CA	FFEINE 95.8		%		80-120	17-SEP-12
WG1548363-13 DU Dissolved Organic C		L1209363-16 5.04	4.95		mg/L	1.8	20	17-SEP-12
WG1548363-1 MB Dissolved Organic C			<0.50		mg/L		0.5	17-SEP-12
WG1548363-3 MB Dissolved Organic C			<0.50		mg/L		0.5	17-SEP-12
WG1548363-5 MB	}							

Workorder: L1209363 Report Date: 27-SEP-12 Page 7 of 37

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CARBONS-DOC-VA	Water							
	39195							
WG1548363-5 Dissolved Organ	MB ic Carbon		<0.50		mg/L		0.5	17-SEP-12
WG1548363-7 Dissolved Organ	MB ic Carbon		<0.50		mg/L		0.5	17-SEP-12
WG1548363-9 Dissolved Organ	MB ic Carbon		<0.50		mg/L		0.5	17-SEP-12
WG1548363-14 Dissolved Organ		L1209478-2	96.4		%		70-130	17-SEP-12
Batch R24	39946							
WG1550152-2 Dissolved Organ	CRM ic Carbon	VA-DOC-C-C	AFFEINE 98.1		%		80-120	19-SEP-12
WG1550152-4 Dissolved Organ	CRM ic Carbon	VA-DOC-C-C	AFFEINE 94.2		%		80-120	19-SEP-12
WG1550152-6 Dissolved Organ	CRM ic Carbon	VA-DOC-C-C	AFFEINE 90.1		%		80-120	19-SEP-12
WG1550152-8 Dissolved Organ	CRM ic Carbon	VA-DOC-C-C	AFFEINE 90.4		%		80-120	19-SEP-12
WG1550152-1 Dissolved Organ	MB ic Carbon		<0.50		mg/L		0.5	19-SEP-12
WG1550152-3 Dissolved Organ	MB ic Carbon		<0.50		mg/L		0.5	19-SEP-12
WG1550152-5 Dissolved Organ	MB ic Carbon		<0.50		mg/L		0.5	19-SEP-12
WG1550152-7 Dissolved Organ	MB ic Carbon		<0.50		mg/L		0.5	19-SEP-12
WG1550152-10 Dissolved Organ		L1210319-11	100.4		%		70-130	19-SEP-12
COD-COL-VA	Water							
	37967							
WG1548328-10 COD	LCS		104.4		%		85-115	18-SEP-12
WG1548328-2 COD	LCS		104.5		%		85-115	18-SEP-12
WG1548328-6 COD	LCS		102.1		%		85-115	18-SEP-12
WG1548328-1 COD	МВ		<20		mg/L		20	18-SEP-12
WG1548328-5	МВ		-		<i>3</i> -			10 027 12

Workorder: L1209363 Report Date: 27-SEP-12 Page 8 of 37

Test	Matrix	Reference	Result Qualifier	Units	RPD	Limit	Analyzed
COD-COL-VA	Water						
Batch R243796	67						
WG1548328-5 MB COD			<20	mg/L		20	18-SEP-12
WG1548328-9 MB COD			<20	mg/L		20	18-SEP-12
WG1548328-4 MS COD		L1209045-1	103.7	%		75-125	18-SEP-12
WG1548328-8 MS COD		L1209491-2	96.7	%		75-125	18-SEP-12
EPH-SF-FID-VA	Water						
Batch R243997	79						
WG1549364-1 MB EPH10-19			<0.25	mg/L		0.25	20-SEP-12
EPH19-32			<0.25	mg/L		0.25	20-SEP-12
Batch R244008	32						
WG1549364-3 MB							
EPH10-19			<0.25	mg/L		0.25	21-SEP-12
EPH19-32			<0.25	mg/L		0.25	21-SEP-12
Batch R244217	76						
WG1550411-1 MB EPH10-19			<0.25	mg/L		0.25	24-SEP-12
EPH19-32			<0.25	mg/L		0.25	
WG1550411-3 MB			V 0.23	mg/L		0.25	24-SEP-12
EPH10-19			<0.25	mg/L		0.25	24-SEP-12
EPH19-32			<0.25	mg/L		0.25	24-SEP-12
HG-DIS-CVAFS-VA	Water						
Batch R243805	56						
WG1548035-3 LCS							
Mercury (Hg)-Dissolv	ed		91.4	%		80-120	18-SEP-12
WG1548035-1 MB Mercury (Hg)-Dissolv	ed		<0.000050	mg/L		0.00005	18-SEP-12
Batch R243915							
WG1548683-10 LCS Mercury (Hg)-Dissolv			95.4	%		80-120	19-SEP-12
WG1548683-11 LCS Mercury (Hg)-Dissolv			99.3	%		80-120	19-SEP-12
WG1548683-1 MB Mercury (Hg)-Dissolv			<0.000050	mg/L		0.00005	19-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 9 of 37

Test	Matrix	Reference	Result Qual	ifier Units	RPD	Limit	Analyzed
HG-DIS-CVAFS-VA	Water						
Batch R2439159 WG1548683-7 MB Mercury (Hg)-Dissolved			<0.000050	mg/L		0.00005	19-SEP-12
Batch R2440928 WG1548035-18 DUP Mercury (Hg)-Dissolved		L1209363-2 <0.00020	<0.000050	RPD-NA mg/L	N/A	20	21-SEP-12
WG1548035-19 MS Mercury (Hg)-Dissolved		L1209363-3	87.1	%		70-130	21-SEP-12
Batch R2442023 WG1552509-8 MB Mercury (Hg)-Dissolved			<0.000050	mg/L		0.00005	24-SEP-12
Batch R2443000 WG1552509-14 LCS Mercury (Hg)-Dissolved			89.5	%		80-120	25-SEP-12
WG1552509-15 LCS Mercury (Hg)-Dissolved			90.8	%		80-120	25-SEP-12
WG1552509-7 LCS Mercury (Hg)-Dissolved			89.9	%		80-120	25-SEP-12
WG1552509-1 MB Mercury (Hg)-Dissolved			<0.000050	mg/L		0.00005	25-SEP-12
WG1552509-9 MB Mercury (Hg)-Dissolved			<0.000050	mg/L		0.00005	25-SEP-12
MET-DIS-ICP-VA	Water						
Batch R2437951							
WG1548035-2 CRM		VA-HIGH-WA		%		00.400	17.050.10
Beryllium (Be)-Dissolved Bismuth (Bi)-Dissolved			95.2 99.6	%		80-120	17-SEP-12
Cobalt (Co)-Dissolved			95.0	%		80-120	17-SEP-12 17-SEP-12
Iron (Fe)-Dissolved			97.4	%		80-120	
Lithium (Li)-Dissolved			100.2	%		80-120	17-SEP-12
Molybdenum (Mo)-Dissolv	ved		96.4	%		80-120	17-SEP-12
Nickel (Ni)-Dissolved			96.3	%		80-120 80-120	17-SEP-12 17-SEP-12
Phosphorus (P)-Dissolved	d		101.7	%		80-120	17-SEP-12 17-SEP-12
Silicon (Si)-Dissolved	-		103.7	%		80-120	17-SEP-12 17-SEP-12
Silver (Ag)-Dissolved			93.8	%		80-120	17-SEP-12
5.1701 (7.1g) D10001700			55.0	%		00-120	17-0L1-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 10 of 37

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2437951								
WG1548035-2 CRM Strontium (Sr)-Dissolved		VA-HIGH-WA	ATRM 99.3		%		80-120	17-SEP-12
Thallium (TI)-Dissolved			96.9		%		80-120	17-SEP-12
Tin (Sn)-Dissolved			98.9		%		80-120	17-SEP-12
Titanium (Ti)-Dissolved			96.9		%		80-120	17-SEP-12
Vanadium (V)-Dissolved			96.2		%		80-120	17-SEP-12
WG1548035-1 MB							00 120	., 62, 12
Beryllium (Be)-Dissolved			<0.0050		mg/L		0.005	17-SEP-12
Bismuth (Bi)-Dissolved			<0.20		mg/L		0.2	17-SEP-12
Cobalt (Co)-Dissolved			<0.010		mg/L		0.01	17-SEP-12
Iron (Fe)-Dissolved			< 0.030		mg/L		0.03	17-SEP-12
Lithium (Li)-Dissolved			<0.010		mg/L		0.01	17-SEP-12
Molybdenum (Mo)-Dissolv	/ed		<0.030		mg/L		0.03	17-SEP-12
Nickel (Ni)-Dissolved			< 0.050		mg/L		0.05	17-SEP-12
Phosphorus (P)-Dissolved	i		<0.30		mg/L		0.3	17-SEP-12
Silicon (Si)-Dissolved			< 0.050		mg/L		0.05	17-SEP-12
Silver (Ag)-Dissolved			<0.010		mg/L		0.01	17-SEP-12
Sodium (Na)-Dissolved			<2.0		mg/L		2	17-SEP-12
Strontium (Sr)-Dissolved			<0.0050		mg/L		0.005	17-SEP-12
Thallium (TI)-Dissolved			<0.20		mg/L		0.2	17-SEP-12
Tin (Sn)-Dissolved			< 0.030		mg/L		0.03	17-SEP-12
Titanium (Ti)-Dissolved			<0.010		mg/L		0.01	17-SEP-12
Vanadium (V)-Dissolved			<0.030		mg/L		0.03	17-SEP-12
Batch R2438999								
WG1548683-4 CRM		VA-HIGH-WA	ATRM					
Beryllium (Be)-Dissolved			94.1		%		80-120	18-SEP-12
Bismuth (Bi)-Dissolved			99.0		%		80-120	18-SEP-12
Cobalt (Co)-Dissolved			96.0		%		80-120	18-SEP-12
Iron (Fe)-Dissolved			98.2		%		80-120	18-SEP-12
Lithium (Li)-Dissolved			100.0		%		80-120	18-SEP-12
Molybdenum (Mo)-Dissolv	/ed		97.0		%		80-120	18-SEP-12
Nickel (Ni)-Dissolved			96.4		%		80-120	18-SEP-12
Phosphorus (P)-Dissolved	d		99.1		%		80-120	18-SEP-12
Silicon (Si)-Dissolved			102.3		%		80-120	18-SEP-12
Silver (Ag)-Dissolved			95.2		%		80-120	18-SEP-12
Sodium (Na)-Dissolved			99.1		%		80-120	18-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 11 of 37

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2438999								
WG1548683-4 CRM	.1	VA-HIGH-W			0/			
Strontium (Sr)-Dissolve	a		100.1		%		80-120	18-SEP-12
Thallium (TI)-Dissolved			97.6		%		80-120	18-SEP-12
Tin (Sn)-Dissolved			97.6		%		80-120	18-SEP-12
Titanium (Ti)-Dissolved			100.9		%		80-120	18-SEP-12
Vanadium (V)-Dissolved	d		96.4		%		80-120	18-SEP-12
WG1548683-8 CRM Beryllium (Be)-Dissolve	d	VA-HIGH-W	ATRM 92.8		%		90 120	10 CED 10
Bismuth (Bi)-Dissolved	u		99.0		%		80-120	18-SEP-12
Cobalt (Co)-Dissolved			99.0 96.4		%		80-120	18-SEP-12
Iron (Fe)-Dissolved			96.4 97.0		%		80-120	18-SEP-12
			98.3		%		80-120	18-SEP-12
Lithium (Li)-Dissolved	alvad				%		80-120	18-SEP-12
Molybdenum (Mo)-Diss Nickel (Ni)-Dissolved	uiveu		97.1 96.8		%		80-120	18-SEP-12
Phosphorus (P)-Dissolv	ad		99.0				80-120	18-SEP-12
. ,	eu				%		80-120	18-SEP-12
Silicon (Si)-Dissolved			101.3 94.9		%		80-120	18-SEP-12
Silver (Ag)-Dissolved							80-120	18-SEP-12
Sodium (Na)-Dissolved	۵.		98.3 98.4		%		80-120	18-SEP-12
Strontium (Sr)-Dissolved	u				%		80-120	18-SEP-12
Thallium (TI)-Dissolved			98.5		%		80-120	18-SEP-12
Tin (Sn)-Dissolved			98.2		%		80-120	18-SEP-12
Titanium (Ti)-Dissolved			100.1		%		80-120	18-SEP-12
Vanadium (V)-Dissolved			95.0		%		80-120	18-SEP-12
WG1548683-1 MB Beryllium (Be)-Dissolve	d		<0.0050		mg/L		0.005	18-SEP-12
Bismuth (Bi)-Dissolved	-		<0.20		mg/L		0.2	18-SEP-12
Cobalt (Co)-Dissolved			<0.010		mg/L		0.01	18-SEP-12
Iron (Fe)-Dissolved			<0.030		mg/L		0.03	18-SEP-12
Lithium (Li)-Dissolved			<0.010		mg/L		0.01	18-SEP-12
Molybdenum (Mo)-Diss	olved		<0.030		mg/L		0.03	18-SEP-12
Nickel (Ni)-Dissolved			<0.050		mg/L		0.05	18-SEP-12
Phosphorus (P)-Dissolv	ed		<0.30		mg/L		0.03	18-SEP-12
Silicon (Si)-Dissolved			<0.050		mg/L		0.3	18-SEP-12 18-SEP-12
Silver (Ag)-Dissolved			<0.030		mg/L		0.05	
Sodium (Na)-Dissolved			<2.0		mg/L		2	18-SEP-12
Strontium (Sr)-Dissolved			<0.0050		mg/L		4	18-SEP-12 18-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 12 of 37

est I	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2438999								
WG1548683-1 MB			0.00		4			
Thallium (TI)-Dissolved			<0.20		mg/L		0.2	18-SEP-12
Tin (Sn)-Dissolved			<0.030		mg/L		0.03	18-SEP-12
Titanium (Ti)-Dissolved			<0.010		mg/L		0.01	18-SEP-12
Vanadium (V)-Dissolved			<0.030		mg/L		0.03	18-SEP-12
WG1548683-7 MB Beryllium (Be)-Dissolved			<0.0050		mg/L		0.005	18-SEP-12
Bismuth (Bi)-Dissolved			<0.20		mg/L		0.2	18-SEP-12
Cobalt (Co)-Dissolved			<0.010		mg/L		0.01	18-SEP-12
Iron (Fe)-Dissolved			< 0.030		mg/L		0.03	18-SEP-12
Lithium (Li)-Dissolved			<0.010		mg/L		0.01	18-SEP-12
Molybdenum (Mo)-Dissolv	ed		< 0.030		mg/L		0.03	18-SEP-12
Nickel (Ni)-Dissolved			< 0.050		mg/L		0.05	18-SEP-12
Phosphorus (P)-Dissolved			< 0.30		mg/L		0.3	18-SEP-12
Silicon (Si)-Dissolved			< 0.050		mg/L		0.05	18-SEP-12
Silver (Ag)-Dissolved			<0.010		mg/L		0.01	18-SEP-12
Sodium (Na)-Dissolved			<2.0		mg/L		2	18-SEP-12
Strontium (Sr)-Dissolved			<0.0050		mg/L		0.005	18-SEP-12
Thallium (TI)-Dissolved			<0.20		mg/L		0.2	18-SEP-12
Tin (Sn)-Dissolved			< 0.030		mg/L		0.03	18-SEP-12
Titanium (Ti)-Dissolved			<0.010		mg/L		0.01	18-SEP-12
Vanadium (V)-Dissolved			<0.030		mg/L		0.03	18-SEP-12
Batch R2439886								
WG1548035-17 MS		L1208829-3						
Iron (Fe)-Dissolved			93.9		%		70-130	20-SEP-12
Sodium (Na)-Dissolved			100.1		%		70-130	20-SEP-12
Titanium (Ti)-Dissolved			106.0		%		70-130	20-SEP-12
Batch R2440104								
WG1548035-11 MS		L1209483-3						
Iron (Fe)-Dissolved			96.0		%		70-130	19-SEP-12
Sodium (Na)-Dissolved			102.0		%		70-130	19-SEP-12
Titanium (Ti)-Dissolved			105.4		%		70-130	19-SEP-12
Batch R2441032								
WG1548683-6 MS		L1209093-4	00.8		9/.		70.400	00.055.15
Iron (Fe)-Dissolved			90.8		%		70-130	20-SEP-12
Sodium (Na)-Dissolved			103.3		%		70-130	20-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 13 of 37

MET-DIS-ICP-VA Water Batch R2441032 WC15488354-6 MS L1209093-4 Titanium (Ti)-Dissolved 103.7 % 70-130 20-SEP-12	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MC01548683-6 MS Titanim (Ti)-Dissolved 103.7 % 70-130 20-SEP-12	MET-DIS-ICP-VA	Water							
Titanium (Ti)-Dissolved 103.7			1.4000000 4						
WG1552509-10 CRM		-	L1209093-4	103.7		%		70-130	20-SEP-12
Beryllium (Be)-Dissolved 98.6 % 80-120 24-SEP-12 Bismuth (Bi)-Dissolved 102.1 % 80-120 24-SEP-12 Cobalt (Co)-Dissolved 97.5 % 80-120 24-SEP-12 Lindium (Li)-Dissolved 100.2 % 80-120 24-SEP-12 Lithium (Li)-Dissolved 100.9 % 80-120 24-SEP-12 Molybdenum (Mo)-Dissolved 100.1 % 80-120 24-SEP-12 Nickel (Ni)-Dissolved 98.1 % 80-120 24-SEP-12 Phosphorus (P)-Dissolved 102.2 % 80-120 24-SEP-12 Silicon (Si)-Dissolved 101.9 % 80-120 24-SEP-12 Silver (Ag)-Dissolved 101.9 % 80-120 24-SEP-12 Sodium (Na)-Dissolved 101.8 % 80-120 24-SEP-12 Thallium (Ti)-Dissolved 100.1 % 80-120 24-SEP-12 Tin (Sn)-Dissolved 105.0 % 80-120 24-SEP-12 WG-152509-8 MB 8									
Bismuth (Bi)-Dissolved		-	VA-HIGH-WA			%		80-120	24-SEP-12
Cobalt (Co)-Dissolved 97.5 % 80-120 24-SEP-12 Iron (Fe)-Dissolved Iron (Fe)-Dissolved 100.2 % 80-120 24-SEP-12 24-SEP-12 24-SEP-12 24-SEP-12 24-SEP-12 Molybdenum (Mo)-Dissolved 100.9 % 80-120 24-SEP-12 24-SEP-12 Molybdenum (Mo)-Dissolved 100.1 % 80-120 24-SEP-12 24-SEP-12 Molybdenum (Mo)-Dissolved 100.1 % 80-120 24-SEP-12 24-SEP-12 Molybdenum (Mo)-Dissolved 100.2 % 80-120 24-SEP-12 34-SEP-12 Molybdenum (Mo)-Dissolved 100.1 % 80-120 24-SEP-12 34-SEP-12 34-SEP-12 34-SEP-12 34-SEP-12 35-SEP-12 34-SEP-12 35-SEP-12 35-SE									
Iron (Fe)-Dissolved	` '								
Lithium (Li)-Dissolved 100.9 % 80-120 24-SEP-12 Molybdenum (Mo)-Dissolved 100.1 % 80-120 24-SEP-12 Nickel (Ni)-Dissolved 98.1 % 80-120 24-SEP-12 Phosphorus (P)-Dissolved 102.2 % 80-120 24-SEP-12 Silicor (Si)-Dissolved 102.1 % 80-120 24-SEP-12 Silver (Ag)-Dissolved 101.9 % 80-120 24-SEP-12 Sodium (Na)-Dissolved 102.2 % 80-120 24-SEP-12 Strontium (Sr)-Dissolved 101.8 % 80-120 24-SEP-12 Thallium (Ti)-Dissolved 100.1 % 80-120 24-SEP-12 Tin (Sn)-Dissolved 98.6 % 80-120 24-SEP-12 Tinalium (Ti)-Dissolved 105.0 % 80-120 24-SEP-12 WG1552599-8 MB 80-120 24-SEP-12 WG1552599-8 MB 80-120 24-SEP-12 WG1552599-8 MB 80-120 24-SEP-12	` ,					%			
Molybdenum (Mo)-Dissolved 100.1 % 80-120 24-SEP-12 Nickel (Ni)-Dissolved 98.1 % 80-120 24-SEP-12 Phosphorus (P)-Dissolved 102.2 % 80-120 24-SEP-12 Silicon (Si)-Dissolved 102.1 % 80-120 24-SEP-12 Silver (Ag)-Dissolved 101.9 % 80-120 24-SEP-12 Sodium (Na)-Dissolved 102.2 % 80-120 24-SEP-12 Strontium (Sr)-Dissolved 101.8 % 80-120 24-SEP-12 Thallium (Ti)-Dissolved 100.1 % 80-120 24-SEP-12 Tin (Sn)-Dissolved 98.6 % 80-120 24-SEP-12 Titanium (Ti)-Dissolved 105.0 % 80-120 24-SEP-12 Vanadium (V)-Dissolved 101.3 % 80-120 24-SEP-12 WG1552509-8 MB MB 9-120 24-SEP-12 WG1552509-8 MB 9-120 0.05 24-SEP-12 WG1552509-8 MB 9-120 0	Lithium (Li)-Disso	olved		100.9		%			
Nickel (Ni)-Dissolved 98.1 % 80-120 24-SEP-12 Phosphorus (P)-Dissolved 102.2 % 80-120 24-SEP-12 Silicon (Si)-Dissolved 102.1 % 80-120 24-SEP-12 Silicon (Si)-Dissolved 101.9 % 80-120 24-SEP-12 Sodium (Na)-Dissolved 102.2 % 80-120 24-SEP-12 Strontium (Sr)-Dissolved 101.8 % 80-120 24-SEP-12 Thallium (Ti)-Dissolved 100.1 % 80-120 24-SEP-12 Tin (Sn)-Dissolved 98.6 % 80-120 24-SEP-12 Titanium (Ti)-Dissolved 105.0 % 80-120 24-SEP-12 Vanadium (V)-Dissolved 101.3 % 80-120 24-SEP-12 WG152509-8 MB MB 80-120 24-SEP-12 WG152509-8 MB MB MB 80-120 24-SEP-12 WG152509-8 MB MB MB 80-120 24-SEP-12 WG152509-8 MB MB<				100.1		%			
Silicon (Si)-Dissolved 102.1 % 80-120 24-SEP-12 Silver (Ag)-Dissolved 101.9 % 80-120 24-SEP-12 Sodium (Na)-Dissolved 102.2 % 80-120 24-SEP-12 Strontium (Sr)-Dissolved 101.8 % 80-120 24-SEP-12 Thallium (TI)-Dissolved 100.1 % 80-120 24-SEP-12 Tin (Sn)-Dissolved 98.6 % 80-120 24-SEP-12 Titanium (Ti)-Dissolved 105.0 % 80-120 24-SEP-12 Vanadium (V)-Dissolved 101.3 % 80-120 24-SEP-12 Vanadium (V)-Dissolved 101.3 % 80-120 24-SEP-12 Vanadium (V)-Dissolved 101.3 % 80-120 24-SEP-12 Vanadium (V)-Dissolved 0.0050 mg/L 0.005 24-SEP-12 WG152509-8 MB MB 80-120 24-SEP-12 Berylium (Be)-Dissolved <0.005	Nickel (Ni)-Dissol	lved		98.1		%		80-120	
Silver (Ag)-Dissolved 101.9 % 80-120 24-SEP-12 Sodium (Na)-Dissolved 102.2 % 80-120 24-SEP-12 Strontium (Sr)-Dissolved 101.8 % 80-120 24-SEP-12 Thallium (TI)-Dissolved 100.1 % 80-120 24-SEP-12 Tin (Sn)-Dissolved 98.6 % 80-120 24-SEP-12 Titanium (Ti)-Dissolved 105.0 % 80-120 24-SEP-12 Vanadium (V)-Dissolved 101.3 % 80-120 24-SEP-12 WG1552509-8 MB MB NB	Phosphorus (P)-[Dissolved		102.2		%		80-120	24-SEP-12
Sodium (Na)-Dissolved 102.2 % 80-120 24-SEP-12 Strontium (Sr)-Dissolved 101.8 % 80-120 24-SEP-12 Thallium (TI)-Dissolved 100.1 % 80-120 24-SEP-12 Tin (Sn)-Dissolved 98.6 % 80-120 24-SEP-12 Titanium (Ti)-Dissolved 105.0 % 80-120 24-SEP-12 Vanadium (V)-Dissolved 101.3 % 80-120 24-SEP-12 WG1552509-8 MB MB 80-120 24-SEP-12 WG1552509-8 MB NB 80-120 24-SEP-12 WG1552509-8 MB NB NB NB Beryllium (Be)-Dissolved <0.0050	Silicon (Si)-Disso	lved		102.1		%		80-120	24-SEP-12
Strontium (Sr)-Dissolved 101.8 % 80-120 24-SEP-12 Thallium (Tl)-Dissolved 100.1 % 80-120 24-SEP-12 Tin (Sn)-Dissolved 98.6 % 80-120 24-SEP-12 Titanium (Ti)-Dissolved 105.0 % 80-120 24-SEP-12 Vanadium (V)-Dissolved 101.3 % 80-120 24-SEP-12 WG1552509-8 MB MB/L 0.005 24-SEP-12 MB/L 0.005 24-SEP-12 MB/L 0.02 24-SEP-12 MB/L 0.01 24-SEP-12 MB/L 0.01 24-SEP-12 MB/L 0.01 24-SEP-12 MB/L 0.01 24-SEP-12 MB/L 0.03 24-SEP-12 MB/L 0.01 24-SEP-12	Silver (Ag)-Disso	lved		101.9		%		80-120	24-SEP-12
Thallium (TI)-Dissolved 100.1 % 80-120 24-SEP-12 Tin (Sn)-Dissolved 98.6 % 80-120 24-SEP-12 Titanium (Ti)-Dissolved 105.0 % 80-120 24-SEP-12 Vanadium (V)-Dissolved 101.3 % 80-120 24-SEP-12 WG1552509-8 MB	Sodium (Na)-Diss	solved		102.2		%		80-120	24-SEP-12
Tin (Sn)-Dissolved 98.6 % 80-120 24-SEP-12 Titanium (Ti)-Dissolved 105.0 % 80-120 24-SEP-12 Vanadium (V)-Dissolved 101.3 % 80-120 24-SEP-12 WG1552509-8 MB Beryllium (Be)-Dissolved <0.0050 mg/L 0.005 24-SEP-12 Bismuth (Bi)-Dissolved <0.20 mg/L 0.02 24-SEP-12 Cobalt (Co)-Dissolved <0.010 mg/L 0.01 24-SEP-12 Iron (Fe)-Dissolved <0.030 mg/L 0.03 24-SEP-12 Lithium (Li)-Dissolved <0.010 mg/L 0.01 24-SEP-12 Lithium (Li)-Dissolved <0.030 mg/L 0.03 24-SEP-12 Molybdenum (Mo)-Dissolved <0.030 mg/L 0.03 24-SEP-12 Molybdenum (Mo)-Dissolved <0.030 mg/L 0.03 24-SEP-12 Nickel (Ni)-Dissolved <0.050 mg/L 0.05 24-SEP-12 Phosphorus (P)-Dissolved <0.030 mg/L 0.05 24-SEP-12 Silicon (Si)-Dissolved <0.050 mg/L 0.05 24-SEP-12 Silver (Ag)-Dissolved <0.010 mg/L 0.05 24-SEP-12 Silver (Ag)-Dissolved <0.010 mg/L 0.05 24-SEP-12 Silver (Ag)-Dissolved <0.010 mg/L 0.01 24-SEP-12 Sodium (Na)-Dissolved <0.0050 mg/L 0.05 24-SEP-12 Sodium (Na)-Dissolved <0.0050 mg/L 0.05 24-SEP-12 Strontium (Sr)-Dissolved <0.0050 mg/L 0.005 24-SEP-12 Strontium (Sr)-Dissolved <0.0050 mg/L 0.005 24-SEP-12	Strontium (Sr)-Di	ssolved		101.8		%		80-120	24-SEP-12
Titanium (Ti)-Dissolved 105.0 % 80-120 24-SEP-12 Vanadium (V)-Dissolved 101.3 % 80-120 24-SEP-12 WG1552509-8 MB MB MB MB Beryllium (Be)-Dissolved <0.0050	Thallium (TI)-Diss	solved		100.1		%		80-120	24-SEP-12
Vanadium (V)-Dissolved 101.3 % 80-120 24-SEP-12 WG1552509-8 MB Beryllium (Be)-Dissolved <0.0050 mg/L 0.005 24-SEP-12 Bismuth (Bi)-Dissolved <0.20	Tin (Sn)-Dissolve	ed		98.6		%		80-120	24-SEP-12
WG1552509-8 MB MB Beryllium (Be)-Dissolved <0.0050	Titanium (Ti)-Diss	solved		105.0		%		80-120	24-SEP-12
Beryllium (Be)-Dissolved <0.0050	Vanadium (V)-Dis	ssolved		101.3		%		80-120	24-SEP-12
Bismuth (Bi)-Dissolved <0.20				<0.0050		ma/L		0.005	24-SFP-12
Cobalt (Co)-Dissolved <0.010 mg/L 0.01 24-SEP-12 Iron (Fe)-Dissolved <0.030				<0.20		_			
Iron (Fe)-Dissolved <0.030									
Lithium (Li)-Dissolved <0.010				<0.030		-			
Molybdenum (Mo)-Dissolved <0.030	Lithium (Li)-Disso	olved		<0.010		mg/L			
Nickel (Ni)-Dissolved <0.050	Molybdenum (Mo)-Dissolved		< 0.030		mg/L			
Phosphorus (P)-Dissolved <0.30	Nickel (Ni)-Dissol	lved		<0.050		mg/L		0.05	
Silicon (Si)-Dissolved <0.050	Phosphorus (P)-[Dissolved		<0.30		mg/L		0.3	
Silver (Ag)-Dissolved <0.010	Silicon (Si)-Disso	lved		<0.050		mg/L			24-SEP-12
Sodium (Na)-Dissolved <2.0 mg/L 2 24-SEP-12 Strontium (Sr)-Dissolved <0.0050	Silver (Ag)-Dissol	lved		<0.010		mg/L			
Strontium (Sr)-Dissolved <0.0050 mg/L 0.005 24-SEP-12 Thallium (TI)-Dissolved <0.20	Sodium (Na)-Diss	solved		<2.0		mg/L			
Thallium (TI)-Dissolved <0.20 mg/L 0.2 24-SEP-12	Strontium (Sr)-Di	ssolved		<0.0050		mg/L		0.005	
	Thallium (TI)-Diss	solved		<0.20		mg/L		0.2	
Tin (Sn)-Dissolved <0.030 mg/L 0.03 24-SEP-12	Tin (Sn)-Dissolve	ed		< 0.030		mg/L		0.03	24-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 14 of 37

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2442122								
WG1552509-8 MB					,,			
Titanium (Ti)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Vanadium (V)-Dissolved			<0.030		mg/L		0.03	24-SEP-12
Batch R2442237								
WG1548035-27 MS Iron (Fe)-Dissolved		L1209469-4	95.2		%		70-130	21-SEP-12
Sodium (Na)-Dissolved			104.9		%		70-130	21-SEP-12 21-SEP-12
Titanium (Ti)-Dissolved			105.2		%		70-130	21-SEP-12 21-SEP-12
• •			100.2		70		70-130	21-3EF-12
Batch R2442242 WG1548035-18 DUP		L1209363-2						
Beryllium (Be)-Dissolved		< 0.0050	<0.0050	RPD-NA	mg/L	N/A	20	21-SEP-12
Bismuth (Bi)-Dissolved		<0.20	<0.20	RPD-NA	mg/L	N/A	20	21-SEP-12
Cobalt (Co)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	21-SEP-12
Iron (Fe)-Dissolved		0.475	0.481		mg/L	1.4	20	21-SEP-12
Lithium (Li)-Dissolved		0.021	0.021		mg/L	0.4	20	21-SEP-12
Molybdenum (Mo)-Dissol	ved	<0.030	<0.030	RPD-NA	mg/L	N/A	20	21-SEP-12
Nickel (Ni)-Dissolved		<0.050	<0.050	RPD-NA	mg/L	N/A	20	21-SEP-12
Phosphorus (P)-Dissolve	d	<0.30	<0.30	RPD-NA	mg/L	N/A	20	21-SEP-12
Silicon (Si)-Dissolved		6.51	6.58		mg/L	1.1	20	21-SEP-12
Silver (Ag)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	21-SEP-12
Sodium (Na)-Dissolved		113	113		mg/L	0.1	20	21-SEP-12
Strontium (Sr)-Dissolved		2.20	2.22		mg/L	0.7	20	21-SEP-12
Thallium (TI)-Dissolved		<0.20	<0.20	RPD-NA	mg/L	N/A	20	21-SEP-12
Tin (Sn)-Dissolved		<0.030	<0.030	RPD-NA	mg/L	N/A	20	21-SEP-12
Titanium (Ti)-Dissolved		0.018	0.019		mg/L	2.7	20	21-SEP-12
Vanadium (V)-Dissolved		<0.030	<0.030	RPD-NA	mg/L	N/A	20	21-SEP-12
WG1548035-19 MS		L1209363-3						
Iron (Fe)-Dissolved			104.2		%		70-130	21-SEP-12
Sodium (Na)-Dissolved			N/A	MS-B	%		=	21-SEP-12
Titanium (Ti)-Dissolved			113.9		%		70-130	21-SEP-12
Batch R2442243								
WG1548035-25 MS Iron (Fe)-Dissolved		L1209711-3	94.5		%		70-130	22-SEP-12
Sodium (Na)-Dissolved			97.7		%		70-130	22-SEP-12
Titanium (Ti)-Dissolved			99.3		%		70-130	22-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 15 of 37

Test Mat	trix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA Wa	iter						
Batch R2442493							
WG1548035-29 MS	L1210039-13						
Iron (Fe)-Dissolved		93.3		%		70-130	22-SEP-12
Sodium (Na)-Dissolved		101.6		%		70-130	22-SEP-12
Titanium (Ti)-Dissolved		107.9		%		70-130	22-SEP-12
WG1548035-31 MS Iron (Fe)-Dissolved	L1210039-31			%		70.400	00.050.40
Sodium (Na)-Dissolved		93.9 98.5		% %		70-130	22-SEP-12
` '				% %		70-130	22-SEP-12
Titanium (Ti)-Dissolved		104.9		%		70-130	22-SEP-12
Batch R2442899							
WG1552509-11 CRM Beryllium (Be)-Dissolved	VA-HIGH-W	ATRM 95.7		%		80-120	24-SEP-12
Bismuth (Bi)-Dissolved		99.1		%		80-120	24-SEP-12
Cobalt (Co)-Dissolved		95.6		%		80-120	24-SEP-12
Iron (Fe)-Dissolved		98.1		%		80-120	24-SEP-12
Lithium (Li)-Dissolved		101.3		%		80-120	24-SEP-12
Molybdenum (Mo)-Dissolved		97.6		%		80-120	24-SEP-12
Nickel (Ni)-Dissolved		97.2		%		80-120	24-SEP-12
Phosphorus (P)-Dissolved		100.4		%		80-120	24-SEP-12
Silicon (Si)-Dissolved		100.8		%		80-120	24-SEP-12
Silver (Ag)-Dissolved		102.4		%		80-120	24-SEP-12
Sodium (Na)-Dissolved		97.1		%		80-120	24-SEP-12
Strontium (Sr)-Dissolved		100.0		%		80-120	24-SEP-12
Thallium (TI)-Dissolved		96.9		%		80-120	24-SEP-12
Tin (Sn)-Dissolved		99.0		%		80-120	24-SEP-12
Titanium (Ti)-Dissolved		102.1		%		80-120	24-SEP-12
Vanadium (V)-Dissolved		100.9		%		80-120	24-SEP-12
WG1552509-5 CRM	VA-HIGH-W	ATRM					_
Beryllium (Be)-Dissolved		96.5		%		80-120	24-SEP-12
Bismuth (Bi)-Dissolved		99.1		%		80-120	24-SEP-12
Cobalt (Co)-Dissolved		95.4		%		80-120	24-SEP-12
Iron (Fe)-Dissolved		98.7		%		80-120	24-SEP-12
Lithium (Li)-Dissolved		106.5		%		80-120	24-SEP-12
Molybdenum (Mo)-Dissolved		99.3		%		80-120	24-SEP-12
Nickel (Ni)-Dissolved		97.5		%		80-120	24-SEP-12
Phosphorus (P)-Dissolved		100.9		%		80-120	24-SEP-12
Silicon (Si)-Dissolved		102.7		%		80-120	24-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 16 of 37

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2442899								
WG1552509-5 CRM		VA-HIGH-W			0/			
Silver (Ag)-Dissolved			104.3		%		80-120	24-SEP-12
Sodium (Na)-Dissolved			98.4		%		80-120	24-SEP-12
Strontium (Sr)-Dissolved			101.8		%		80-120	24-SEP-12
Thallium (TI)-Dissolved			97.9		%		80-120	24-SEP-12
Tin (Sn)-Dissolved			97.7		%		80-120	24-SEP-12
Titanium (Ti)-Dissolved			103.0		%		80-120	24-SEP-12
Vanadium (V)-Dissolved			101.6		%		80-120	24-SEP-12
WG1552509-1 MB Beryllium (Be)-Dissolved			<0.0050		mg/L		0.005	24-SEP-12
Bismuth (Bi)-Dissolved			<0.20		mg/L		0.2	24-SEP-12
Cobalt (Co)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Iron (Fe)-Dissolved			<0.030		mg/L		0.03	24-SEP-12
Lithium (Li)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Molybdenum (Mo)-Dissol	ved		<0.030		mg/L		0.03	24-SEP-12
Nickel (Ni)-Dissolved			<0.050		mg/L		0.05	24-SEP-12
Phosphorus (P)-Dissolved	d		<0.30		mg/L		0.3	24-SEP-12
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	24-SEP-12
Silver (Ag)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Sodium (Na)-Dissolved			<2.0		mg/L		2	24-SEP-12
Strontium (Sr)-Dissolved			<0.0050		mg/L		0.005	24-SEP-12
Thallium (TI)-Dissolved			<0.20		mg/L		0.2	24-SEP-12
Tin (Sn)-Dissolved			< 0.030		mg/L		0.03	24-SEP-12
Titanium (Ti)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Vanadium (V)-Dissolved			< 0.030		mg/L		0.03	24-SEP-12
WG1552509-9 MB								
Beryllium (Be)-Dissolved			<0.0050		mg/L		0.005	24-SEP-12
Bismuth (Bi)-Dissolved			<0.20		mg/L		0.2	24-SEP-12
Cobalt (Co)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Iron (Fe)-Dissolved			< 0.030		mg/L		0.03	24-SEP-12
Lithium (Li)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Molybdenum (Mo)-Dissol	ved		< 0.030		mg/L		0.03	24-SEP-12
Nickel (Ni)-Dissolved			< 0.050		mg/L		0.05	24-SEP-12
Phosphorus (P)-Dissolved	d		< 0.30		mg/L		0.3	24-SEP-12
Silicon (Si)-Dissolved			< 0.050		mg/L		0.05	24-SEP-12
Silver (Ag)-Dissolved			<0.010		mg/L		0.01	24-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 17 of 37

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2442899								
WG1552509-9 MB Sodium (Na)-Dissolved			<2.0		ma/l		0	04.050.40
Strontium (Sr)-Dissolved			<0.0050		mg/L		2	24-SEP-12
Thallium (TI)-Dissolved					mg/L		0.005	24-SEP-12
` '			<0.20		mg/L		0.2	24-SEP-12
Tin (Sn)-Dissolved			<0.030 <0.010		mg/L		0.03	24-SEP-12
Titanium (Ti)-Dissolved					mg/L		0.01	24-SEP-12
Vanadium (V)-Dissolved			<0.030		mg/L		0.03	24-SEP-12
Batch R2443052		1.4000.400.40						
WG1548035-9 MS Iron (Fe)-Dissolved		L1209492-46	100.2		%		70-130	25-SEP-12
Sodium (Na)-Dissolved			101.8		%		70-130	25-SEP-12
Titanium (Ti)-Dissolved			109.3		%		70-130	25-SEP-12
Batch R2443115								
WG1548035-5 MS		L1209555-18						
Iron (Fe)-Dissolved			99.9		%		70-130	25-SEP-12
Sodium (Na)-Dissolved			114.6		%		70-130	25-SEP-12
Titanium (Ti)-Dissolved			112.7		%		70-130	25-SEP-12
WG1548035-7 MS		L1209555-29						
Iron (Fe)-Dissolved			101.7		%		70-130	25-SEP-12
Sodium (Na)-Dissolved			109.8		%		70-130	25-SEP-12
Titanium (Ti)-Dissolved			112.0		%		70-130	25-SEP-12
Batch R2443141								
WG1548035-15 MS		L1209537-4	06 F		%		70.400	00 OED 10
Iron (Fe)-Dissolved Sodium (Na)-Dissolved			96.5 101.9				70-130	23-SEP-12
Titanium (Ti)-Dissolved			101.9		%		70-130	23-SEP-12
, ,			106.4		%		70-130	23-SEP-12
Batch R2443782								
WG1548035-13 MS Iron (Fe)-Dissolved		L1209540-7	87.8		%		70-130	25-SEP-12
Sodium (Na)-Dissolved			97.3		%		70-130	25-SEP-12
Titanium (Ti)-Dissolved			94.9		%		70-130	25-SEP-12
` ,					. .		70-100	20 OLI -12
Batch R2444051 WG1548035-33 MS		L1209581-2						
Iron (Fe)-Dissolved		L120001-2	100.4		%		70-130	24-SEP-12
Sodium (Na)-Dissolved			108.6		%		70-130	24-SEP-12
Titanium (Ti)-Dissolved			111.1		%		70-130	24-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 18 of 37

Antimony (Sb)-Dissolved	Matrix	Reference I	Result	Qualifier	Units	RPD	Limit	Analyzed
WG1548035-1 MB Aluminum (Al)-Dissolved	DIS-LOW-MS-VA Water							
Aluminum (Al)-Dissolved	ch R2438088							
Antimony (Sb)-Dissolved			0.0000					
Arsenic (As)-Dissolved					•			18-SEP-12
Barium (Ba)-Dissolved					•			18-SEP-12
Boron (B)-Dissolved	,				•			18-SEP-12
Cadmium (Cd)-Dissolved					•			18-SEP-12
Calcium (Ca)-Dissolved	` '							18-SEP-12
Chromium (Cr)-Dissolved <.0.00050 mg/L 0.0005 18-St Copper (Cu)-Dissolved <0.00050	` ,							18-SEP-12
Copper (Cu)-Dissolved <.0.00050 mg/L 0.0005 18-St Lead (Pb)-Dissolved <0.000050					•		0.02	18-SEP-12
Lead (Pb)-Dissolved	,		<0.00050		mg/L		0.0005	18-SEP-12
Magnesium (Mg)-Dissolved <0.0050 mg/L 0.005 18-St Manganese (Mn)-Dissolved <0.000050			<0.00050		mg/L		0.0005	18-SEP-12
Manganese (Mn)-Dissolved <0.000050	ead (Pb)-Dissolved		<0.000050		mg/L		0.00005	18-SEP-12
Potassium (K)-Dissolved <.0.050 mg/L 0.05 18-St Selenium (Se)-Dissolved <.0.0010 mg/L 0.001 18-St Uranium (U)-Dissolved <.0.000010 mg/L 0.00001 18-St Zinc (Zn)-Dissolved <.0.0030 mg/L 0.0000 18-St Batch R2438189 VA-HIGH-WATRM VA-HIGH-WATRM VA-HIGH-WATRM VA-HIGH-WATRM Aluminum (Al)-Dissolved 112.9 % 80-120 18-St 48-St 48	agnesium (Mg)-Dissolved		<0.0050		mg/L		0.005	18-SEP-12
Selenium (Se)-Dissolved <0.0010 mg/L 0.001 18-St Uranium (U)-Dissolved <0.000010	anganese (Mn)-Dissolved		<0.000050		mg/L		0.00005	18-SEP-12
Uranium (U)-Dissolved <0.000010 mg/L 0.00001 18-Sizer (Zn)-Dissolved Batch R2438189 R2438189 WG1548683-4 CRM Aluminum (Al)-Dissolved VA-HIGH-WATRM VA-HIGH-WATRM <th< td=""><td>otassium (K)-Dissolved</td><td></td><td><0.050</td><td></td><td>mg/L</td><td></td><td>0.05</td><td>18-SEP-12</td></th<>	otassium (K)-Dissolved		<0.050		mg/L		0.05	18-SEP-12
Zinc (Zn)-Dissolved <0.0030 mg/L 0.003 18-SE Batch R2438189 WG1548683-4 CRM Aluminum (Al)-Dissolved VA-HIGH-WATRM 112.9 % 80-120 18-SE Antimony (Sb)-Dissolved 107.1 % 80-120 18-SE Arsenic (As)-Dissolved 112.9 % 80-120 18-SE Barium (Ba)-Dissolved 114.2 % 80-120 18-SE Cadmium (Cd)-Dissolved 113.0 % 80-120 18-SE Calcium (Ca)-Dissolved 108.0 % 80-120 18-SE Chromium (Cr)-Dissolved 111.6 % 80-120 18-SE Copper (Cu)-Dissolved 108.3 % 80-120 18-SE Magnesium (Mg)-Dissolved 107.6 % 80-120 18-SE Manganese (Mn)-Dissolved 110.1 % 80-120 18-SE Potassium (K)-Dissolved 110.9 % 80-120 18-SE Selenium (Se)-Dissolved 104.0 % 80-120 18-SE	elenium (Se)-Dissolved		<0.0010		mg/L		0.001	18-SEP-12
Batch R2438189 WG1548683-4 CRM Aluminum (Al)-Dissolved VA-HIGH-WATRM Antimony (Sb)-Dissolved 112.9 % 80-120 18-SE Antimony (Sb)-Dissolved 112.9 % 80-120 18-SE Arsenic (As)-Dissolved 114.2 % 80-120 18-SE Barium (Ba)-Dissolved 113.0 % 80-120 18-SE Cadmium (Cd)-Dissolved 113.0 % 80-120 18-SE Calcium (Ca)-Dissolved 108.0 % 80-120 18-SE Chromium (Cr)-Dissolved 111.6 % 80-120 18-SE Copper (Cu)-Dissolved 107.6 % 80-120 18-SE Magnesium (Mg)-Dissolved 111.6 % 80-120 18-SE Manganese (Mn)-Dissolved 110.1 % 80-120 18-SE Potassium (K)-Dissolved 110.9 % 80-120 18-SE Varaium (U)-Dissolved 101.4 % 80-120 18-SE Viraium (U)-Dissolved 104.0 %	ranium (U)-Dissolved		<0.000010		mg/L		0.00001	18-SEP-12
WG1548683-4 CRM VA-HIGH-WATRM Aluminum (Al)-Dissolved 112.9 % 80-120 18-SE Antimony (Sb)-Dissolved 107.1 % 80-120 18-SE Arsenic (As)-Dissolved 112.9 % 80-120 18-SE Barium (Ba)-Dissolved 114.2 % 80-120 18-SE Cadmium (Cd)-Dissolved 113.0 % 80-120 18-SE Calcium (Ca)-Dissolved 108.0 % 80-120 18-SE Chromium (Cr)-Dissolved 111.6 % 80-120 18-SE Copper (Cu)-Dissolved 107.6 % 80-120 18-SE Magnesium (Mg)-Dissolved 111.6 % 80-120 18-SE Manganese (Mn)-Dissolved 110.1 % 80-120 18-SE Potassium (K)-Dissolved 110.1 % 80-120 18-SE Vranium (U)-Dissolved 101.4 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE	inc (Zn)-Dissolved		<0.0030		mg/L		0.003	18-SEP-12
Aluminum (Al)-Dissolved 112.9 % 80-120 18-SE Antimony (Sb)-Dissolved 107.1 % 80-120 18-SE Arsenic (As)-Dissolved 112.9 % 80-120 18-SE Barium (Ba)-Dissolved 114.2 % 80-120 18-SE Cadmium (Cd)-Dissolved 113.0 % 80-120 18-SE Calcium (Ca)-Dissolved 108.0 % 80-120 18-SE Chromium (Cr)-Dissolved 111.6 % 80-120 18-SE Copper (Cu)-Dissolved 107.6 % 80-120 18-SE Magnesium (Mg)-Dissolved 111.6 % 80-120 18-SE Manganese (Mn)-Dissolved 110.1 % 80-120 18-SE Potassium (K)-Dissolved 110.1 % 80-120 18-SE Selenium (Se)-Dissolved 101.4 % 80-120 18-SE Uranium (U)-Dissolved 104.0 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE	ch R2438189							
Arsenic (As)-Dissolved 112.9 % 80-120 18-SE Barium (Ba)-Dissolved 114.2 % 80-120 18-SE Cadmium (Cd)-Dissolved 113.0 % 80-120 18-SE Calcium (Ca)-Dissolved 108.0 % 80-120 18-SE Chromium (Cr)-Dissolved 111.6 % 80-120 18-SE Copper (Cu)-Dissolved 108.3 % 80-120 18-SE Lead (Pb)-Dissolved 107.6 % 80-120 18-SE Magnesium (Mg)-Dissolved 111.6 % 80-120 18-SE Manganese (Mn)-Dissolved 110.1 % 80-120 18-SE Potassium (K)-Dissolved 110.9 % 80-120 18-SE Selenium (Se)-Dissolved 101.4 % 80-120 18-SE Uranium (U)-Dissolved 104.0 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE					%		80-120	18-SEP-12
Barium (Ba)-Dissolved 114.2 % 80-120 18-SE Cadmium (Cd)-Dissolved 113.0 % 80-120 18-SE Calcium (Ca)-Dissolved 108.0 % 80-120 18-SE Chromium (Cr)-Dissolved 111.6 % 80-120 18-SE Copper (Cu)-Dissolved 108.3 % 80-120 18-SE Lead (Pb)-Dissolved 107.6 % 80-120 18-SE Magnesium (Mg)-Dissolved 111.6 % 80-120 18-SE Manganese (Mn)-Dissolved 110.1 % 80-120 18-SE Potassium (K)-Dissolved 110.9 % 80-120 18-SE Selenium (Se)-Dissolved 101.4 % 80-120 18-SE Uranium (U)-Dissolved 104.0 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE	ntimony (Sb)-Dissolved		107.1		%		80-120	18-SEP-12
Cadmium (Cd)-Dissolved 113.0 % 80-120 18-SE Calcium (Ca)-Dissolved 108.0 % 80-120 18-SE Chromium (Cr)-Dissolved 111.6 % 80-120 18-SE Copper (Cu)-Dissolved 108.3 % 80-120 18-SE Lead (Pb)-Dissolved 107.6 % 80-120 18-SE Magnesium (Mg)-Dissolved 111.6 % 80-120 18-SE Manganese (Mn)-Dissolved 110.1 % 80-120 18-SE Potassium (K)-Dissolved 110.9 % 80-120 18-SE Selenium (Se)-Dissolved 101.4 % 80-120 18-SE Uranium (U)-Dissolved 104.0 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE	rsenic (As)-Dissolved		112.9		%		80-120	18-SEP-12
Calcium (Ca)-Dissolved 108.0 % 80-120 18-SE Chromium (Cr)-Dissolved 111.6 % 80-120 18-SE Copper (Cu)-Dissolved 108.3 % 80-120 18-SE Lead (Pb)-Dissolved 107.6 % 80-120 18-SE Magnesium (Mg)-Dissolved 111.6 % 80-120 18-SE Manganese (Mn)-Dissolved 110.1 % 80-120 18-SE Potassium (K)-Dissolved 110.9 % 80-120 18-SE Selenium (Se)-Dissolved 101.4 % 80-120 18-SE Uranium (U)-Dissolved 104.0 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE	arium (Ba)-Dissolved		114.2		%		80-120	18-SEP-12
Calcium (Ca)-Dissolved 108.0 % 80-120 18-SE Chromium (Cr)-Dissolved 111.6 % 80-120 18-SE Copper (Cu)-Dissolved 108.3 % 80-120 18-SE Lead (Pb)-Dissolved 107.6 % 80-120 18-SE Magnesium (Mg)-Dissolved 111.6 % 80-120 18-SE Manganese (Mn)-Dissolved 110.1 % 80-120 18-SE Potassium (K)-Dissolved 110.9 % 80-120 18-SE Selenium (Se)-Dissolved 101.4 % 80-120 18-SE Uranium (U)-Dissolved 104.0 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE	admium (Cd)-Dissolved		113.0		%		80-120	18-SEP-12
Chromium (Cr)-Dissolved 111.6 % 80-120 18-SE Copper (Cu)-Dissolved 108.3 % 80-120 18-SE Lead (Pb)-Dissolved 107.6 % 80-120 18-SE Magnesium (Mg)-Dissolved 111.6 % 80-120 18-SE Manganese (Mn)-Dissolved 110.1 % 80-120 18-SE Potassium (K)-Dissolved 110.9 % 80-120 18-SE Selenium (Se)-Dissolved 101.4 % 80-120 18-SE Uranium (U)-Dissolved 104.0 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE	alcium (Ca)-Dissolved		108.0		%		80-120	18-SEP-12
Copper (Cu)-Dissolved 108.3 % 80-120 18-SE Lead (Pb)-Dissolved 107.6 % 80-120 18-SE Magnesium (Mg)-Dissolved 111.6 % 80-120 18-SE Manganese (Mn)-Dissolved 110.1 % 80-120 18-SE Potassium (K)-Dissolved 110.9 % 80-120 18-SE Selenium (Se)-Dissolved 101.4 % 80-120 18-SE Uranium (U)-Dissolved 104.0 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE	hromium (Cr)-Dissolved		111.6		%		80-120	18-SEP-12
Lead (Pb)-Dissolved 107.6 % 80-120 18-SE Magnesium (Mg)-Dissolved 111.6 % 80-120 18-SE Manganese (Mn)-Dissolved 110.1 % 80-120 18-SE Potassium (K)-Dissolved 110.9 % 80-120 18-SE Selenium (Se)-Dissolved 101.4 % 80-120 18-SE Uranium (U)-Dissolved 104.0 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE	opper (Cu)-Dissolved		108.3		%		80-120	18-SEP-12
Magnesium (Mg)-Dissolved 111.6 % 80-120 18-SE Manganese (Mn)-Dissolved 110.1 % 80-120 18-SE Potassium (K)-Dissolved 110.9 % 80-120 18-SE Selenium (Se)-Dissolved 101.4 % 80-120 18-SE Uranium (U)-Dissolved 104.0 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE					%			18-SEP-12
Manganese (Mn)-Dissolved 110.1 % 80-120 18-SE Potassium (K)-Dissolved 110.9 % 80-120 18-SE Selenium (Se)-Dissolved 101.4 % 80-120 18-SE Uranium (U)-Dissolved 104.0 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE	agnesium (Mg)-Dissolved		111.6		%			18-SEP-12
Potassium (K)-Dissolved 110.9 % 80-120 18-SE Selenium (Se)-Dissolved 101.4 % 80-120 18-SE Uranium (U)-Dissolved 104.0 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE	langanese (Mn)-Dissolved		110.1					18-SEP-12
Selenium (Se)-Dissolved 101.4 % 80-120 18-SE Uranium (U)-Dissolved 104.0 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE	3 , ,							18-SEP-12
Uranium (U)-Dissolved 104.0 % 80-120 18-SE Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE								18-SEP-12
Zinc (Zn)-Dissolved 102.4 % 80-120 18-SE								18-SEP-12
	()							18-SEP-12
Aluminum (Al)-Dissolved <0.0030 mg/L 0.003 18-SE	G1548683-7 MB							18-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 19 of 37

Test Mat	trix Reference	Result Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA Wa	iter					
Batch R2438189						
WG1548683-7 MB		0.00040	/l		0.0004	
Antimony (Sb)-Dissolved		<0.00010	mg/L		0.0001	18-SEP-12
Arsenic (As)-Dissolved		<0.00010	mg/L		0.0001	18-SEP-12
Barium (Ba)-Dissolved		<0.000050	mg/L		0.00005	18-SEP-12
Boron (B)-Dissolved		<0.010	mg/L		0.01	18-SEP-12
Cadmium (Cd)-Dissolved		<0.000050	mg/L		0.00005	18-SEP-12
Chromium (Cr)-Dissolved		<0.00050	mg/L		0.0005	18-SEP-12
Copper (Cu)-Dissolved		<0.00050	mg/L		0.0005	18-SEP-12
Lead (Pb)-Dissolved		<0.000050	mg/L		0.00005	18-SEP-12
Potassium (K)-Dissolved		<0.050	mg/L		0.05	18-SEP-12
Selenium (Se)-Dissolved		<0.0010	mg/L		0.001	18-SEP-12
Uranium (U)-Dissolved		<0.000010	mg/L		0.00001	18-SEP-12
Zinc (Zn)-Dissolved		<0.0030	mg/L		0.003	18-SEP-12
Batch R2438609						
WG1548683-1 MB						
Aluminum (Al)-Dissolved		<0.0030	mg/L		0.003	18-SEP-12
Antimony (Sb)-Dissolved		<0.00010	mg/L		0.0001	18-SEP-12
Arsenic (As)-Dissolved		<0.00010	mg/L		0.0001	18-SEP-12
Barium (Ba)-Dissolved		<0.000050	mg/L		0.00005	18-SEP-12
Boron (B)-Dissolved		<0.010	mg/L		0.01	18-SEP-12
Cadmium (Cd)-Dissolved		<0.000050	mg/L		0.00005	18-SEP-12
Calcium (Ca)-Dissolved		<0.020	mg/L		0.02	18-SEP-12
Chromium (Cr)-Dissolved		<0.00050	mg/L		0.0005	18-SEP-12
Copper (Cu)-Dissolved		<0.00050	mg/L		0.0005	18-SEP-12
Lead (Pb)-Dissolved		<0.000050	mg/L		0.00005	18-SEP-12
Magnesium (Mg)-Dissolved		<0.0050	mg/L		0.005	18-SEP-12
Manganese (Mn)-Dissolved		<0.000050	mg/L		0.00005	18-SEP-12
Potassium (K)-Dissolved		<0.050	mg/L		0.05	18-SEP-12
Selenium (Se)-Dissolved		<0.0010	mg/L		0.001	18-SEP-12
Uranium (U)-Dissolved		<0.000010	mg/L		0.00001	18-SEP-12
Zinc (Zn)-Dissolved		<0.0030	mg/L		0.003	18-SEP-12
Batch R2439752						
WG1548035-2 CRM	VA-HIGH-W	ATRM				
Aluminum (Al)-Dissolved		103.1	%		80-120	19-SEP-12
Antimony (Sb)-Dissolved		100.6	%		80-120	19-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 20 of 37

Test Matrix	Reference Result	Qualifier Units	RPD Limit	Analyzed
MET-DIS-LOW-MS-VA Water				
Batch R2439752				
WG1548035-2 CRM Arsenic (As)-Dissolved	VA-HIGH-WATRM 103.3	%	80-120	19-SEP-12
Barium (Ba)-Dissolved	105.0	%	80-120	19-SEP-12 19-SEP-12
Boron (B)-Dissolved	108.1	%	80-120	
Cadmium (Cd)-Dissolved	103.0	%		19-SEP-12
Calcium (Ca)-Dissolved	97.7	%	80-120	19-SEP-12
Chromium (Cr)-Dissolved	102.6	%	80-120	19-SEP-12
Copper (Cu)-Dissolved	97.1	%	80-120	19-SEP-12
Lead (Pb)-Dissolved	101.3	%	80-120	19-SEP-12
,	99.2	%	80-120	19-SEP-12
Magnesium (Mg)-Dissolved			80-120	19-SEP-12
Manganese (Mn)-Dissolved	101.8	%	80-120	19-SEP-12
Potassium (K)-Dissolved	99.6	%	80-120	19-SEP-12
Selenium (Se)-Dissolved	100.4	%	80-120	19-SEP-12
Uranium (U)-Dissolved	101.5	%	80-120	19-SEP-12
Zinc (Zn)-Dissolved	94.6	%	80-120	19-SEP-12
WG1548683-8 CRM Aluminum (Al)-Dissolved	VA-HIGH-WATRM 99.8	%	80-120	19-SEP-12
Antimony (Sb)-Dissolved	104.3	%	80-120	19-SEP-12
Arsenic (As)-Dissolved	100.7	%	80-120	19-SEP-12
Barium (Ba)-Dissolved	103.6	%	80-120	19-SEP-12
Boron (B)-Dissolved	110.7	%	80-120	19-SEP-12
Cadmium (Cd)-Dissolved	102.1	%	80-120	19-SEP-12
Calcium (Ca)-Dissolved	100.5	%	80-120	19-SEP-12
Chromium (Cr)-Dissolved	100.7	%	80-120	19-SEP-12
Copper (Cu)-Dissolved	96.1	%	80-120	19-SEP-12
Lead (Pb)-Dissolved	105.2	%	80-120	19-SEP-12
Magnesium (Mg)-Dissolved	98.2	%	80-120	19-SEP-12
Manganese (Mn)-Dissolved	101.9	%	80-120	19-SEP-12
Potassium (K)-Dissolved	97.7	%	80-120	19-SEP-12
Selenium (Se)-Dissolved	100.6	%	80-120	19-SEP-12
Uranium (U)-Dissolved	109.6	%	80-120	19-SEP-12
Zinc (Zn)-Dissolved	93.4	%	80-120	19-SEP-12
Batch R2440035				
WG1548683-7 MB				
Calcium (Ca)-Dissolved	<0.020	mg/L	0.02	20-SEP-12
Magnesium (Mg)-Dissolved	<0.0050	mg/L	0.005	20-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 21 of 37

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA	Water							
Batch R2440035 WG1548683-7 MB Manganese (Mn)-Dissol	ved		0.000077	MB-LOR	mg/L		0.00005	20-SEP-12
Batch R2441054 WG1548035-18 DUP Aluminum (Al)-Dissolved	4	L1209363-2 <0.050	<0.015	RPD-NA	mg/L	N/A	20	20-SEP-12
Antimony (Sb)-Dissolved		<0.000	0.00061	KFD-NA	mg/L	1.2	20	20-SEP-12 20-SEP-12
Arsenic (As)-Dissolved	4	0.00855	0.00861		mg/L	0.7	20	20-SEP-12
Barium (Ba)-Dissolved		<0.10	0.0123		mg/L	0.7	20	20-SEP-12 20-SEP-12
Boron (B)-Dissolved		<0.50	<0.050	RPD-NA	mg/L	N/A	20	20-SEP-12
Cadmium (Cd)-Dissolve	d	<0.0010	<0.00025	RPD-NA	mg/L	N/A	20	20-SEP-12
Calcium (Ca)-Dissolved		213	213	THE TWA	mg/L	0.0	20	20-SEP-12
Chromium (Cr)-Dissolve	d	<0.010	<0.0025	RPD-NA	mg/L	N/A	20	20-SEP-12
Copper (Cu)-Dissolved		<0.0050	<0.0025	RPD-NA	mg/L	N/A	20	20-SEP-12
Lead (Pb)-Dissolved		<0.0025	<0.00025	RPD-NA	mg/L	N/A	20	20-SEP-12
Magnesium (Mg)-Dissol	ved	477	482		mg/L	1.2	20	20-SEP-12
Manganese (Mn)-Dissol	ved	0.377	0.385		mg/L	2.1	20	20-SEP-12
Potassium (K)-Dissolved	d	28.2	28.9		mg/L	2.3	20	20-SEP-12
Selenium (Se)-Dissolved	d	< 0.0050	<0.0050	RPD-NA	mg/L	N/A	20	20-SEP-12
Uranium (U)-Dissolved		0.00731	0.00741		mg/L	1.4	20	20-SEP-12
Zinc (Zn)-Dissolved		<0.25	<0.015	RPD-NA	mg/L	N/A	20	20-SEP-12
WG1548035-19 MS Aluminum (Al)-Dissolved	d	L1209363-3	91.6		%		70-130	20-SEP-12
Arsenic (As)-Dissolved			112.8		%		70-130	20-SEP-12
Cadmium (Cd)-Dissolve	d		93.0		%		70-130	20-SEP-12
Calcium (Ca)-Dissolved			N/A	MS-B	%		-	20-SEP-12
Chromium (Cr)-Dissolve	d		94.6		%		70-130	20-SEP-12
Copper (Cu)-Dissolved			87.6		%		70-130	20-SEP-12
Lead (Pb)-Dissolved			101.2		%		70-130	20-SEP-12
Magnesium (Mg)-Dissol	ved		N/A	MS-B	%		-	20-SEP-12
Manganese (Mn)-Dissol	ved		N/A	MS-B	%		-	20-SEP-12
Potassium (K)-Dissolved	ł		N/A	MS-B	%		-	20-SEP-12
Uranium (U)-Dissolved			N/A	MS-B	%		-	20-SEP-12
Zinc (Zn)-Dissolved			80.7		%		70-130	20-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 22 of 37

								90 22 01 0
est N	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA	Water							
Batch R2442159								
WG1552509-8 MB			0.0000		a./I		0.000	
Aluminum (Al)-Dissolved			<0.0030		mg/L		0.003	24-SEP-12
Antimony (Sb)-Dissolved			<0.00010		mg/L		0.0001	24-SEP-12
Arsenic (As)-Dissolved			<0.00010	_	mg/L		0.0001	24-SEP-12
Barium (Ba)-Dissolved			<0.000050)	mg/L		0.00005	24-SEP-12
Boron (B)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Cadmium (Cd)-Dissolved			<0.000050)	mg/L		0.00005	24-SEP-12
Calcium (Ca)-Dissolved			<0.020		mg/L		0.02	24-SEP-12
Chromium (Cr)-Dissolved			<0.00050		mg/L		0.0005	24-SEP-12
Copper (Cu)-Dissolved			<0.00050		mg/L		0.0005	24-SEP-12
Lead (Pb)-Dissolved			<0.000050)	mg/L		0.00005	24-SEP-12
Magnesium (Mg)-Dissolve	d		<0.0050		mg/L		0.005	24-SEP-12
Manganese (Mn)-Dissolve	d		<0.000050)	mg/L		0.00005	24-SEP-12
Potassium (K)-Dissolved			< 0.050		mg/L		0.05	24-SEP-12
Selenium (Se)-Dissolved			<0.0010		mg/L		0.001	24-SEP-12
Uranium (U)-Dissolved			<0.000010)	mg/L		0.00001	24-SEP-12
Zinc (Zn)-Dissolved			< 0.0030		mg/L		0.003	24-SEP-12
WG1548035-19 MS		L1209363-3						
Antimony (Sb)-Dissolved			126.6		%		70-130	24-SEP-12
Boron (B)-Dissolved			127.0		%		70-130	24-SEP-12
Batch R2442738								
WG1552509-1 MB					,,			
Aluminum (Al)-Dissolved			<0.0030		mg/L		0.003	24-SEP-12
Antimony (Sb)-Dissolved			<0.00010		mg/L		0.0001	24-SEP-12
Arsenic (As)-Dissolved			<0.00010		mg/L		0.0001	24-SEP-12
Barium (Ba)-Dissolved			<0.000050)	mg/L		0.00005	24-SEP-12
Boron (B)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Cadmium (Cd)-Dissolved			<0.00005)	mg/L		0.00005	24-SEP-12
Calcium (Ca)-Dissolved			<0.020		mg/L		0.02	24-SEP-12
Chromium (Cr)-Dissolved			<0.00050		mg/L		0.0005	24-SEP-12
Copper (Cu)-Dissolved			<0.00050		mg/L		0.0005	24-SEP-12
Lead (Pb)-Dissolved			<0.00005)	mg/L		0.00005	24-SEP-12
Magnesium (Mg)-Dissolve	d		<0.0050		mg/L		0.005	24-SEP-12
			-0.00005	1	mg/L		0.00005	24-SEP-12
Manganese (Mn)-Dissolve	d		< 0.000050	J	mg/L			
Manganese (Mn)-Dissolve Potassium (K)-Dissolved	a		<0.000	,	mg/L		0.05	24-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 23 of 37

				-	-1	··· ·-		90 20 01 0
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA	Water							
Batch R2442738								
WG1552509-1 MB			0.000011	,	a. #		0.00001	
Uranium (U)-Dissolved			<0.000010	J	mg/L		0.00001	24-SEP-12
Zinc (Zn)-Dissolved			<0.0030		mg/L		0.003	24-SEP-12
WG1552509-9 MB Aluminum (Al)-Dissolved			<0.0030		mg/L		0.003	24-SEP-12
Antimony (Sb)-Dissolved			<0.00010		mg/L		0.003	_
Arsenic (As)-Dissolved			<0.00010		mg/L		0.0001	24-SEP-12
` ,				n	•		0.0001	24-SEP-12
Barium (Ba)-Dissolved			<0.000050 <0.010	J	mg/L		0.00005	24-SEP-12
Boron (B)-Dissolved				_	mg/L		0.01	24-SEP-12
Cadmium (Cd)-Dissolved			<0.000050	J	mg/L		0.00005	24-SEP-12
Calcium (Ca)-Dissolved			<0.020		mg/L		0.02	24-SEP-12
Chromium (Cr)-Dissolved			<0.00050		mg/L		0.0005	24-SEP-12
Copper (Cu)-Dissolved			<0.00050		mg/L		0.0005	24-SEP-12
Lead (Pb)-Dissolved			<0.000050	J	mg/L		0.00005	24-SEP-12
Magnesium (Mg)-Dissolve			<0.0050	_	mg/L		0.005	24-SEP-12
Manganese (Mn)-Dissolve	ed		<0.000050)	mg/L		0.00005	24-SEP-12
Potassium (K)-Dissolved			<0.050		mg/L		0.05	24-SEP-12
Selenium (Se)-Dissolved			<0.0010		mg/L		0.001	24-SEP-12
Uranium (U)-Dissolved			<0.000010)	mg/L		0.00001	24-SEP-12
Zinc (Zn)-Dissolved			<0.0030		mg/L		0.003	24-SEP-12
Batch R2443662								
WG1552509-10 CRM		VA-HIGH-WA						
Aluminum (Al)-Dissolved			104.6		%		80-120	25-SEP-12
Antimony (Sb)-Dissolved			106.7		%		80-120	25-SEP-12
Arsenic (As)-Dissolved			102.2		%		80-120	25-SEP-12
Barium (Ba)-Dissolved			102.5		%		80-120	25-SEP-12
Boron (B)-Dissolved			91.1		%		80-120	25-SEP-12
Cadmium (Cd)-Dissolved			103.9		%		80-120	25-SEP-12
Calcium (Ca)-Dissolved			99.3		%		80-120	25-SEP-12
Chromium (Cr)-Dissolved			100.1		%		80-120	25-SEP-12
Copper (Cu)-Dissolved			98.5		%		80-120	25-SEP-12
Lead (Pb)-Dissolved			102.2		%		80-120	25-SEP-12
Magnesium (Mg)-Dissolve	ed		101.5		%		80-120	25-SEP-12
					%		80-120	25-SEP-12
Manganese (Mn)-Dissolve	ed		102.0		70		00 120	20 022
Manganese (Mn)-Dissolved Potassium (K)-Dissolved	ed		102.0 102.0		%		80-120	25-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 24 of 37

Test M	atrix Refe	erence Result	Qualifier Units	RPD Limit	Analyzed
MET-DIS-LOW-MS-VA W	/ater				
Batch R2443662					
WG1552509-10 CRM	VA-	HIGH-WATRM			
Uranium (U)-Dissolved		103.1	%	80-120	25-SEP-12
Zinc (Zn)-Dissolved		97.0	%	80-120	25-SEP-12
WG1552509-11 CRM Aluminum (Al)-Dissolved	VA-	HIGH-WATRM 104.9	%	00.400	05 05D 40
Antimony (Sb)-Dissolved		106.5	%	80-120	25-SEP-12
Arsenic (As)-Dissolved		100.5	% %	80-120	25-SEP-12
` ,				80-120	25-SEP-12
Barium (Ba)-Dissolved		101.0	%	80-120	25-SEP-12
Boron (B)-Dissolved		91.4	%	80-120	25-SEP-12
Cadmium (Cd)-Dissolved		102.0	%	80-120	25-SEP-12
Calcium (Ca)-Dissolved		99.7	%	80-120	25-SEP-12
Chromium (Cr)-Dissolved		102.1	%	80-120	25-SEP-12
Copper (Cu)-Dissolved		98.5	%	80-120	25-SEP-12
Lead (Pb)-Dissolved		97.8	%	80-120	25-SEP-12
Magnesium (Mg)-Dissolved		105.0	%	80-120	25-SEP-12
Manganese (Mn)-Dissolved		102.5	%	80-120	25-SEP-12
Potassium (K)-Dissolved		101.3	%	80-120	25-SEP-12
Selenium (Se)-Dissolved		99.6	%	80-120	25-SEP-12
Uranium (U)-Dissolved		99.7	%	80-120	25-SEP-12
Zinc (Zn)-Dissolved		97.3	%	80-120	25-SEP-12
WG1552509-5 CRM Aluminum (Al)-Dissolved	VA-	HIGH-WATRM 106.5	%	80-120	25-SEP-12
Antimony (Sb)-Dissolved		105.9	%		
Arsenic (As)-Dissolved		102.8	%	80-120	25-SEP-12
Barium (Ba)-Dissolved		102.5	%	80-120	25-SEP-12
Boron (B)-Dissolved		93.2	%	80-120	25-SEP-12
		103.4	%	80-120	25-SEP-12
Cadmium (Cd)-Dissolved				80-120	25-SEP-12
Calcium (Ca)-Dissolved		101.6	%	80-120	25-SEP-12
Chromium (Cr)-Dissolved		101.2	%	80-120	25-SEP-12
Copper (Cu)-Dissolved		99.2	%	80-120	25-SEP-12
Lead (Pb)-Dissolved		103.4	%	80-120	25-SEP-12
Magnesium (Mg)-Dissolved		103.1	%	80-120	25-SEP-12
Manganese (Mn)-Dissolved		101.9	%	80-120	25-SEP-12
Potassium (K)-Dissolved		103.2	%	80-120	25-SEP-12
Selenium (Se)-Dissolved		101.3	%	80-120	25-SEP-12
Uranium (U)-Dissolved		103.8	%	80-120	25-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 25 of 37

					•			go 20 01 01
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA Batch R2443662 WG1552509-5 CRM Zinc (Zn)-Dissolved	Water	VA-HIGH-WA	TRM 98.7		%		80-120	25-SEP-12
NH3-F-VA	Water							
WG1551682-10 CRM Ammonia, Total (as N)		VA-NH3-F	94.4		%		85-115	23-SEP-12
WG1551682-2 CRM Ammonia, Total (as N)		VA-NH3-F	101.4		%		85-115	23-SEP-12
WG1551682-4 CRM Ammonia, Total (as N)		VA-NH3-F	98.9		%		85-115	23-SEP-12
WG1551682-6 CRM Ammonia, Total (as N)		VA-NH3-F	93.4		%		85-115	23-SEP-12
WG1551682-8 CRM Ammonia, Total (as N)		VA-NH3-F	93.7		%		85-115	23-SEP-12
WG1551682-1 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	23-SEP-12
WG1551682-3 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	23-SEP-12
WG1551682-5 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	23-SEP-12
WG1551682-7 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	23-SEP-12
WG1551682-9 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	23-SEP-12
WG1551682-12 MS Ammonia, Total (as N)		L1209742-2	95.1		%		75-125	23-SEP-12
Batch R2442196 WG1552459-10 CRM Ammonia, Total (as N)		VA-NH3-F	86.6		%		85-115	24-SEP-12
WG1552459-2 CRM Ammonia, Total (as N)		VA-NH3-F	101.0		%		85-115	24-SEP-12
WG1552459-4 CRM Ammonia, Total (as N)		VA-NH3-F	93.1		%		85-115	24-SEP-12
WG1552459-6 CRM Ammonia, Total (as N)		VA-NH3-F	95.5		%		85-115	24-SEP-12
WG1552459-8 CRM Ammonia, Total (as N)		VA-NH3-F	95.6		%		85-115	24-SEP-12
WG1552459-1 MB								

Workorder: L1209363 Report Date: 27-SEP-12 Page 26 of 37

Water							
		<0.0050		mg/L		0.005	24-SEP-12
		<0.0050		mg/L		0.005	24-SEP-12
		<0.0050		mg/L		0.005	24-SEP-12
		<0.0050		mg/L		0.005	24-SEP-12
		<0.0050		mg/L		0.005	24-SEP-12
L	1209462-7	95.5		%		75-125	24-SEP-12
Water							
		105.0		0/_		60.420	20-SEP-12
							20-SEP-12
		101.3		%			20-SEP-12
		107.2		%			20-SEP-12
		101.2		%			20-SEP-12
		100.3		%		60-130	20-SEP-12
		94.7		%		60-130	20-SEP-12
		90.0		%		60-130	20-SEP-12
		93.4		%		60-130	20-SEP-12
		102.6		%		60-130	20-SEP-12
		98.9		%		60-130	20-SEP-12
		105.4		%		60-130	20-SEP-12
		102.7		%		60-130	20-SEP-12
		104.2		%		60-130	20-SEP-12
		102.0		%		50-130	20-SEP-12
		110.2		%		60-130	20-SEP-12
		104.7		%		60-130	20-SEP-12
		99.4		%		60-130	20-SEP-12
		-0.00005	2	m a //		0.00005	
							20-SEP-12 20-SEP-12
		L1209462-7 Water	<0.0050 <0.0050 <0.0050 L1209462-7 95.5 Water 105.0 104.9 101.3 107.2 101.2 100.3 94.7 90.0 93.4 102.6 98.9 105.4 102.7 104.2 102.0 110.2 104.7 99.4 <0.000056	<0.0050 <0.0050 <0.0050 L1209462-7 95.5 Water 105.0 104.9 101.3 107.2 101.2 100.3 94.7 90.0 93.4 102.6 98.9 105.4 102.7 104.2 102.0 110.2 104.7	 <0.0050 mg/L <0.0050 mg/L <0.0050 mg/L <0.0050 mg/L <0.0050 mg/L <0.0050 MayL <0.0050 MayL <0.000050 mg/L <0.000050 mg/L <0.000050 mg/L 	 <0.0050 mg/L <0.0050 mg/L <0.0050 mg/L <0.0050 mg/L <0.0050 mg/L <0.0050 way-L <0.0000 % <0.0000 % <0.000050 <0.00005	 <0.0050 mg/L 0.005 <0.0050 mg/L 0.005 <0.0050 mg/L 0.005 <0.005 t1209462-7 95.5 % 75-125 Water 105.0 % 60-130 104.9 % 60-130 101.3 % 60-130 107.2 % 60-130 100.3 % 60-130 100.3 % 60-130 94.7 % 60-130 94.7 % 60-130 93.4 % 60-130 93.4 % 60-130 93.4 % 60-130 102.6 % 98.9 % 60-130 105.4 % 60-130 102.7 % 60-130 102.7 % 60-130 102.0 % 50-130 110.2 % 60-130 104.7 % 60-130 104.7 % 60-130 40.00050 mg/L 0.00005

Workorder: L1209363 Report Date: 27-SEP-12 Page 27 of 37

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-SF-MS-VA	Water							
Batch R2438644								
WG1549364-1 MB			0.000050		4			
Acridine			<0.000050		mg/L		0.00005	20-SEP-12
Anthracene			<0.000050		mg/L		0.00005	20-SEP-12
Benz(a)anthracene			<0.000050		mg/L		0.00005	20-SEP-12
Benzo(a)pyrene			<0.000010		mg/L		0.00001	20-SEP-12
Benzo(b)fluoranthene			<0.000050		mg/L		0.00005	20-SEP-12
Benzo(g,h,i)perylene			<0.000050		mg/L		0.00005	20-SEP-12
Benzo(k)fluoranthene			<0.000050		mg/L		0.00005	20-SEP-12
Chrysene			<0.000050	1	mg/L		0.00005	20-SEP-12
Dibenz(a,h)anthracene			<0.000050	1	mg/L		0.00005	20-SEP-12
Fluoranthene			<0.000050)	mg/L		0.00005	20-SEP-12
Fluorene			<0.000050)	mg/L		0.00005	20-SEP-12
Indeno(1,2,3-c,d)pyrene)		<0.000050)	mg/L		0.00005	20-SEP-12
Naphthalene			<0.000050	1	mg/L		0.00005	20-SEP-12
Phenanthrene			<0.000050)	mg/L		0.00005	20-SEP-12
Pyrene			<0.000050)	mg/L		0.00005	20-SEP-12
Quinoline			<0.000050)	mg/L		0.00005	20-SEP-12
WG1549364-3 MB								
Acenaphthene			<0.000050	1	mg/L		0.00005	20-SEP-12
Acenaphthylene			<0.000050)	mg/L		0.00005	20-SEP-12
Acridine			<0.000050)	mg/L		0.00005	20-SEP-12
Anthracene			<0.000050)	mg/L		0.00005	20-SEP-12
Benz(a)anthracene			<0.000050)	mg/L		0.00005	20-SEP-12
Benzo(a)pyrene			<0.000010)	mg/L		0.00001	20-SEP-12
Benzo(b)fluoranthene			<0.000050)	mg/L		0.00005	20-SEP-12
Benzo(g,h,i)perylene			<0.000050)	mg/L		0.00005	20-SEP-12
Benzo(k)fluoranthene			<0.000050)	mg/L		0.00005	20-SEP-12
Chrysene			<0.000050)	mg/L		0.00005	20-SEP-12
Dibenz(a,h)anthracene			<0.000050	1	mg/L		0.00005	20-SEP-12
Fluoranthene			<0.000050)	mg/L		0.00005	20-SEP-12
Fluorene			<0.000050)	mg/L		0.00005	20-SEP-12
Indeno(1,2,3-c,d)pyrene	e		<0.000050)	mg/L		0.00005	20-SEP-12
Naphthalene			<0.000050	1	mg/L		0.00005	20-SEP-12
Phenanthrene			<0.000050)	mg/L		0.00005	20-SEP-12
Pyrene			<0.000050	1	mg/L		0.00005	20-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 28 of 37

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-SF-MS-VA	Water							
Batch R2438644 WG1549364-3 MB Quinoline			<0.000050)	mg/L		0.00005	20-SEP-12
Batch R2439714 WG1550411-2 LCS Acenaphthene			91.8		%		60-130	21-SEP-12
Acenaphthylene			88.5		%		60-130	21-SEP-12
Acridine			90.0		%		60-130	21-SEP-12
Anthracene			95.8		%		60-130	21-SEP-12
Benz(a)anthracene			86.4		%		60-130	21-SEP-12
Benzo(a)pyrene			76.7		%		60-130	21-SEP-12
Benzo(b)fluoranthene			89.5		%		60-130	21-SEP-12
Benzo(g,h,i)perylene			91.9		%		60-130	21-SEP-12
Benzo(k)fluoranthene			99.4		%		60-130	21-SEP-12
Chrysene			92.6		%		60-130	21-SEP-12
Dibenz(a,h)anthracene			94.7		%		60-130	21-SEP-12
Fluoranthene			93.1		%		60-130	21-SEP-12
Fluorene			90.6		%		60-130	21-SEP-12
Indeno(1,2,3-c,d)pyrene	e		88.3		%		60-130	21-SEP-12
Naphthalene			86.2		%		50-130	21-SEP-12
Phenanthrene			89.2		%		60-130	21-SEP-12
Pyrene			93.5		%		60-130	21-SEP-12
Quinoline			83.5		%		60-130	21-SEP-12
WG1550411-1 MB			0 000050		4			
Acenaphthene			<0.000050		mg/L		0.00005	21-SEP-12
Acenaphthylene			<0.000050		mg/L		0.00005	21-SEP-12
Acridine			<0.000050		mg/L		0.00005	21-SEP-12
Anthracene			<0.000050		mg/L		0.00005	21-SEP-12
Benz(a)anthracene			<0.000050		mg/L		0.00005	21-SEP-12
Benzo(a)pyrene			<0.000010		mg/L		0.00001	21-SEP-12
Benzo(b)fluoranthene			<0.000050		mg/L		0.00005	21-SEP-12
Benzo(g,h,i)perylene			<0.000050		mg/L		0.00005	21-SEP-12
Benzo(k)fluoranthene			<0.000050		mg/L		0.00005	21-SEP-12
Chrysene			<0.000050		mg/L		0.00005	21-SEP-12
Dibenz(a,h)anthracene			<0.000050		mg/L		0.00005	21-SEP-12
Fluoranthene			<0.000050	1	mg/L		0.00005	21-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 29 of 37

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-SF-MS-VA	Water							
Batch R2439714								
WG1550411-1 MB					,,			
Fluorene			<0.000050		mg/L		0.00005	21-SEP-12
Indeno(1,2,3-c,d)pyrene			<0.000050		mg/L		0.00005	21-SEP-12
Naphthalene			<0.000050		mg/L		0.00005	21-SEP-12
Phenanthrene			<0.000050		mg/L		0.00005	21-SEP-12
Pyrene			<0.000050		mg/L		0.00005	21-SEP-12
Quinoline			<0.000050)	mg/L		0.00005	21-SEP-12
Batch R2440768								
WG1550411-3 MB Acenaphthene			<0.000050	1	mg/L		0.00005	21-SEP-12
Acenaphthylene			<0.000050		mg/L		0.00005	21-SEP-12 21-SEP-12
Acridine			<0.000050		mg/L		0.00005	21-SEP-12
Anthracene			<0.000050		mg/L		0.00005	21-SEP-12
Benz(a)anthracene			<0.000050		mg/L		0.00005	21-SEP-12
Benzo(a)pyrene			<0.000010		mg/L		0.00001	21-SEP-12
Benzo(b)fluoranthene			<0.000050)	mg/L		0.00005	21-SEP-12
Benzo(g,h,i)perylene			<0.000050		mg/L		0.00005	21-SEP-12
Benzo(k)fluoranthene			<0.000050		mg/L		0.00005	21-SEP-12
Chrysene			<0.000050)	mg/L		0.00005	21-SEP-12
Dibenz(a,h)anthracene			<0.000050)	mg/L		0.00005	21-SEP-12
Fluoranthene			<0.000050)	mg/L		0.00005	21-SEP-12
Fluorene			<0.000050)	mg/L		0.00005	21-SEP-12
Indeno(1,2,3-c,d)pyrene			<0.000050)	mg/L		0.00005	21-SEP-12
Naphthalene			<0.000050)	mg/L		0.00005	21-SEP-12
Phenanthrene			<0.000050)	mg/L		0.00005	21-SEP-12
Pyrene			<0.000050)	mg/L		0.00005	21-SEP-12
Quinoline			<0.000050)	mg/L		0.00005	21-SEP-12
PH-PCT-VA	Water							
Batch R2443112								
WG1553049-24 CRM		VA-PH7-BUF						
рН			7.03		рН		6.9-7.1	25-SEP-12
WG1553049-25 CRM pH		VA-PH7-BUF	7.03		рН		6.9-7.1	25-SEP-12
WG1553049-26 CRM pH		VA-PH7-BUF	7.03		рН		6.9-7.1	25-SEP-12
WG1553049-27 CRM		VA-PH7-BUF	7.00		bi i		0.5-7.1	20-9LF-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 30 of 37

					-			. •	190 00 01 01
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-PCT-VA		Water							
Batch R2 WG1553049-27 pH	443112 CRM		VA-PH7-BUF	7.02		рН		6.9-7.1	25-SEP-12
WG1553049-28 pH	CRM		VA-PH7-BUF	7.02		рН		6.9-7.1	25-SEP-12
WG1553049-29 pH	CRM		VA-PH7-BUF	7.01		рН		6.9-7.1	25-SEP-12
WG1553049-30 pH	CRM		VA-PH7-BUF	7.01		рН		6.9-7.1	25-SEP-12
TDS-VA		Water							
Batch R2	439701								
WG1548151-3 Total Dissolved			L1209363-1 8890	8750		mg/L	1.6	20	18-SEP-12
WG1548151-11 Total Dissolved				99.2		%		85-115	18-SEP-12
WG1548151-2 Total Dissolved				100.4		%		85-115	18-SEP-12
WG1548151-5 Total Dissolved				97.8		%		85-115	18-SEP-12
WG1548151-8 Total Dissolved				97.6		%		85-115	18-SEP-12
WG1548151-1 Total Dissolved				<10		mg/L		10	18-SEP-12
WG1548151-10 Total Dissolved				<10		mg/L		10	18-SEP-12
WG1548151-4 Total Dissolved				<10		mg/L		10	18-SEP-12
WG1548151-7 Total Dissolved				<10		mg/L		10	18-SEP-12
TKN-F-VA		Water							
Batch R2	441463								
WG1549655-6 Total Kjeldahl N			L1209363-15 0.572	0.556		mg/L	2.8	20	23-SEP-12
WG1549655-2 Total Kjeldahl N				104.2		%		75-125	23-SEP-12
WG1549655-5 Total Kjeldahl N				112.2		%		75-125	23-SEP-12
WG1549655-1 Total Kjeldahl N	MB litrogen			<0.050		mg/L		0.05	23-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 31 of 37

Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-F-VA Water							
Batch R2441463 WG1549655-4 MB Total Kjeldahl Nitrogen		<0.050		mg/L		0.05	23-SEP-12
Batch R2442141 WG1550523-2 LCS Total Kjeldahl Nitrogen		93.5		%		75-125	24-SEP-12
WG1550523-1 MB Total Kjeldahl Nitrogen		<0.050		mg/L		0.05	24-SEP-12
Batch R2443047 WG1550523-5 LCS							
Total Kjeldahl Nitrogen WG1550523-4 MB		98.2		%		75-125	24-SEP-12
Total Kjeldahl Nitrogen VH-HSFID-VA Water		<0.050		mg/L		0.05	24-SEP-12
Batch R2441333 WG1550775-3 DUP Volatile Hydrocarbons (VH6-10)	L1209363-17 <0.10	<0.10	RPD-NA	mg/L	N/A	50	22-SEP-12
WG1550775-2 LCS Volatile Hydrocarbons (VH6-10)	X0.10	85.2	KFD-INA	%	IV/A	70-130	22-SEP-12 22-SEP-12
WG1550775-1 MB Volatile Hydrocarbons (VH6-10)		<0.10		mg/L		0.1	22-SEP-12
VOC-HSMS-VA Water							
Batch R2443281 WG1554616-2 LCS							
Bromodichloromethane		93.9		%		70-130	26-SEP-12
Bromoform		93.6		%		70-130	26-SEP-12
Carbon Tetrachloride		103.1		%		70-130	26-SEP-12
Chlorobenzene		98.5		%		70-130	26-SEP-12
Dibromochloromethane		93.9		%		70-130	26-SEP-12
Chloroethane		95.8		%		60-140	26-SEP-12
Chloroform		94.2		%		70-130	26-SEP-12
Chloromethane		96.7		%		60-140	26-SEP-12
1,2-Dichlorobenzene		99.6		%		70-130	26-SEP-12
1,3-Dichlorobenzene		103.1		%		70-130	26-SEP-12
1,4-Dichlorobenzene		100.8		%		70-130	26-SEP-12
1,1-Dichloroethane		90.6		%		70-130	26-SEP-12
1,2-Dichloroethane		85.3		%		70-130	26-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 32 of 37

Test Matrix	Reference	Result Qual	ifier Units	RPD	Limit	Analyzed
VOC-HSMS-VA Water	·					
Batch R2443281						
WG1554616-2 LCS						
1,1-Dichloroethylene		80.5	%		70-130	26-SEP-12
cis-1,2-Dichloroethylene		95.2	%		70-130	26-SEP-12
trans-1,2-Dichloroethylene		88.8	%		70-130	26-SEP-12
Dichloromethane		86.3	%		60-140	26-SEP-12
1,2-Dichloropropane		90.6	%		70-130	26-SEP-12
cis-1,3-Dichloropropylene		88.1	%		70-130	26-SEP-12
trans-1,3-Dichloropropylene		88.0	%		70-130	26-SEP-12
1,1,1,2-Tetrachloroethane		100.7	%		70-130	26-SEP-12
1,1,2,2-Tetrachloroethane		84.9	%		70-130	26-SEP-12
Tetrachloroethylene		106.3	%		70-130	26-SEP-12
1,1,1-Trichloroethane		100.2	%		70-130	26-SEP-12
1,1,2-Trichloroethane		89.1	%		70-130	26-SEP-12
Trichloroethylene		101.7	%		70-130	26-SEP-12
Trichlorofluoromethane		111.4	%		60-140	26-SEP-12
Vinyl Chloride		99.8	%		60-140	26-SEP-12
WG1554616-1 MB						
Bromodichloromethane		<0.0010	mg/L		0.001	26-SEP-12
Bromoform		<0.0010	mg/L		0.001	26-SEP-12
Carbon Tetrachloride		<0.00050	mg/L		0.0005	26-SEP-12
Chlorobenzene		<0.0010	mg/L		0.001	26-SEP-12
Dibromochloromethane		<0.0010	mg/L		0.001	26-SEP-12
Chloroethane		<0.0010	mg/L		0.001	26-SEP-12
Chloroform		<0.0010	mg/L		0.001	26-SEP-12
Chloromethane		<0.0050	mg/L		0.005	26-SEP-12
1,2-Dichlorobenzene		<0.00070	mg/L		0.0007	26-SEP-12
1,3-Dichlorobenzene		<0.0010	mg/L		0.001	26-SEP-12
1,4-Dichlorobenzene		<0.0010	mg/L		0.001	26-SEP-12
1,1-Dichloroethane		<0.0010	mg/L		0.001	26-SEP-12
1,2-Dichloroethane		<0.0010	mg/L		0.001	26-SEP-12
1,1-Dichloroethylene		<0.0010	mg/L		0.001	26-SEP-12
cis-1,2-Dichloroethylene		<0.0010	mg/L		0.001	26-SEP-12
trans-1,2-Dichloroethylene		<0.0010	mg/L		0.001	26-SEP-12
Dichloromethane		<0.0050	mg/L		0.005	26-SEP-12
1,2-Dichloropropane		<0.0010	mg/L		0.001	26-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 33 of 37

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HSMS-VA	Water							
Batch R244328 WG1554616-1 MB	1							
cis-1,3-Dichloropropyle	ene		<0.0010		mg/L		0.001	26-SEP-12
trans-1,3-Dichloroprop	ylene		<0.0010		mg/L		0.001	26-SEP-12
1,1,1,2-Tetrachloroeth	ane		<0.0010		mg/L		0.001	26-SEP-12
1,1,2,2-Tetrachloroeth	ane		<0.0010		mg/L		0.001	26-SEP-12
Tetrachloroethylene			<0.0010		mg/L		0.001	26-SEP-12
1,1,1-Trichloroethane			<0.0010		mg/L		0.001	26-SEP-12
1,1,2-Trichloroethane			<0.0010		mg/L		0.001	26-SEP-12
Trichloroethylene			<0.0010		mg/L		0.001	26-SEP-12
Trichlorofluoromethan	е		<0.0010		mg/L		0.001	26-SEP-12
Vinyl Chloride			<0.0010		mg/L		0.001	26-SEP-12
VOC7-HSMS-VA	Water							
Batch R244106	6							
WG1550775-3 DUP Benzene		L1209363-17 <0.00050	<0.00050	RPD-NA	mg/L	N/A	30	23-SEP-12
Ethylbenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	23-SEP-12
Methyl t-butyl ether (M	TBE)	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	23-SEP-12
Styrene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	23-SEP-12
Toluene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	23-SEP-12
meta- & para-Xylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	23-SEP-12
ortho-Xylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	23-SEP-12
WG1550775-2 LCS Benzene			101.5		%		70.400	00.050.40
			101.5		%		70-130	22-SEP-12
Ethylbenzene	TDC)		100.6		%		70-130	22-SEP-12
Methyl t-butyl ether (M	IDE)		98.7		%		70-130	22-SEP-12
Styrene Toluene			101.6		%		70-130	22-SEP-12
meta- & para-Xylene			101.8		%		70-130	22-SEP-12
ortho-Xylene			103.3		%		70-130	22-SEP-12
-			104.7		70		70-130	22-SEP-12
WG1550775-1 MB Benzene			<0.00050		mg/L		0.0005	22-SEP-12
Ethylbenzene			<0.00050		mg/L		0.0005	22-SEP-12
Methyl t-butyl ether (M	TBE)		<0.00050		mg/L		0.0005	22-SEP-12
Styrene	•		<0.00050		mg/L		0.0005	22-SEP-12
Toluene			<0.00050		mg/L		0.0005	22-SEP-12
meta- & para-Xylene			<0.00050		mg/L		0.0005	22-SEP-12
, .					-			

Workorder: L1209363 Report Date: 27-SEP-12 Page 34 of 37

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC7-HSMS-VA	Water							
Batch R2441 WG1550775-1 MI								
ortho-Xylene			<0.00050		mg/L		0.0005	22-SEP-12

Workorder: L1209363 Report Date: 27-SEP-12 Page 35 of 37

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MB-LOR	Method Blank exceeds ALS DQO. LORs adjusted for samples with positive hits below 5 times blank level. Please contact ALS if re-analysis is required.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1209363 Report Date: 27-SEP-12

Page 36 of 37

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
Total Dissolved Solids by G	ravimetric						
Total Biodolivou Collad by C	1	09-SEP-12 15:40	18-SEP-12 00:00	7	8	days	EHT
	2	10-SEP-12 10:20	18-SEP-12 00:00	7	8	days	EHT
	3	10-SEP-12 11:30	18-SEP-12 00:00	7	8	days	EHT
mll by Mater (Automoted)	J	10 OLI 12 11.00	10 OLI 12 00.00	•	O	days	_,,,
pH by Meter (Automated)		00.055.40.45.40	05 050 40 44 40		000		EUTD EM
	1	09-SEP-12 15:40	25-SEP-12 11:16	0.25	380	hours	EHTR-FM
	2	10-SEP-12 10:20	25-SEP-12 11:16	0.25	361	hours	EHTR-FM
	3	10-SEP-12 11:30	25-SEP-12 11:16	0.25	360	hours	EHTR-FM
	4	13-SEP-12 13:30	25-SEP-12 11:16	0.25	286	hours	EHTR-FM
	5	12-SEP-12 10:40	25-SEP-12 11:16	0.25	313	hours	EHTR-FN
	6	10-SEP-12 16:30	25-SEP-12 11:16	0.25	355	hours	EHTR-FM
	7	10-SEP-12 17:45	25-SEP-12 11:16	0.25	354	hours	EHTR-FM
	8	10-SEP-12 16:30	25-SEP-12 11:16	0.25	355	hours	EHTR-FM
	9	12-SEP-12 13:20	25-SEP-12 11:16	0.25	310	hours	EHTR-FM
	10	11-SEP-12 10:45	25-SEP-12 11:16	0.25	336	hours	EHTR-FM
	11	11-SEP-12 12:30	25-SEP-12 11:16	0.25	335	hours	EHTR-FM
	12	11-SEP-12 14:15	25-SEP-12 11:16	0.25	333	hours	EHTR-FM
	13	11-SEP-12 15:15	25-SEP-12 11:16	0.25	332	hours	EHTR-FN
	14	12-SEP-12 17:30	25-SEP-12 11:16	0.25	306	hours	EHTR-FN
	15	13-SEP-12 09:25	25-SEP-12 11:16	0.25	290	hours	EHTR-FM
	16	13-SEP-12 09:55	25-SEP-12 11:16	0.25	289	hours	EHTR-FM
	17	11-SEP-12 19:15	25-SEP-12 11:16	0.25	328	hours	EHTR-FM
Anions and Nutrients							
Nitrate Nitrogen by Ion Chro	omatography						
	1	09-SEP-12 15:40	14-SEP-12 17:19	3	5	days	EHTR
	2	10-SEP-12 10:20	14-SEP-12 17:19	3	4	days	EHTR
	3	10-SEP-12 11:30	14-SEP-12 17:19	3	4	days	EHTR
	6	10-SEP-12 16:30	14-SEP-12 17:19	3	4	days	EHTR
	7	10-SEP-12 17:45	14-SEP-12 17:19	3	4	days	EHTR
	8	10-SEP-12 16:30	14-SEP-12 17:19	3	4	days	EHTR
Nitrite Nitrogen by Ion Chro	matography						
-	1	09-SEP-12 15:40	14-SEP-12 17:19	3	5	days	EHTR
	2	10-SEP-12 10:20	14-SEP-12 17:19	3	4	days	EHTR
	3	10-SEP-12 11:30	14-SEP-12 17:19	3	4	days	EHTR
	6	10-SEP-12 16:30	14-SEP-12 17:19	3	4	days	EHTR
	7	10-SEP-12 17:45	14-SEP-12 17:19	3	4	days	EHTR
	8	10-SEP-12 16:30	14-SEP-12 17:19	3	4	days	EHTR
Volatile Organic Compounds	5					_	
VOCs in water by Headspace	ce GCMS						
veces in water by meadepar	1	09-SEP-12 15:40	26-SEP-12 19:41	14	17	days	EHT
	2	10-SEP-12 10:20	26-SEP-12 19:41	14	16	days	EHT
	3	10-SEP-12 11:30	26-SEP-12 19:41	14	16	days	EHT
	6	10-SEP-12 16:30	26-SEP-12 19:41	14	16	days	EHT
	7	10-SEP-12 17:45	26-SEP-12 19:41	14	16	days	EHT
	8	10-SEP-12 16:30	26-SEP-12 19:41	14	16	days	EHT
	10	11-SEP-12 10:45	26-SEP-12 19:41	14	15	days	EHT
	11	11-SEP-12 10:43	26-SEP-12 19:41	14	15	days	EHT
	12	11-SEP-12 12:30 11-SEP-12 14:15	26-SEP-12 19:41	14	15	days	EHT
	13	11-SEP-12 14:15	26-SEP-12 19:41	14	15	days	EHT
	17	11-SEP-12 19:15	26-SEP-12 19:41	14	15	days	EHT
		521 12 15.16	20 021 12 10.71		10	auyo	L. 11
Legend & Qualifier Definitior							

Workorder: L1209363 Report Date: 27-SEP-12 Page 37 of 37

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

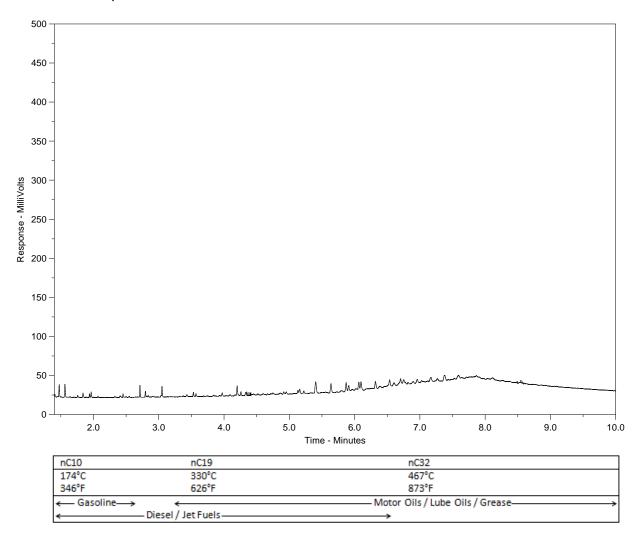
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

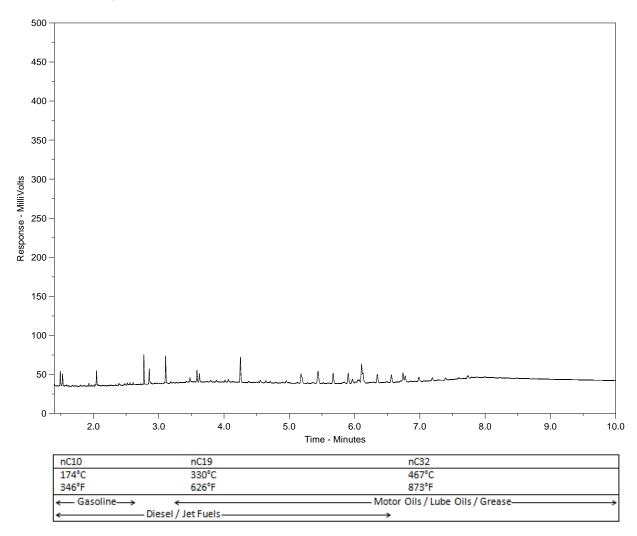
Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1209363 were received on 14-SEP-12 10:55.


ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

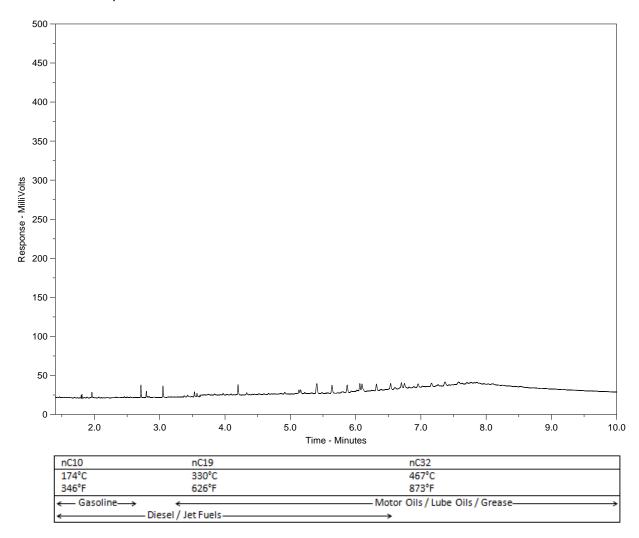
ALS Sample ID: L1209363-1 Client Sample ID: PC-MW12-01


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

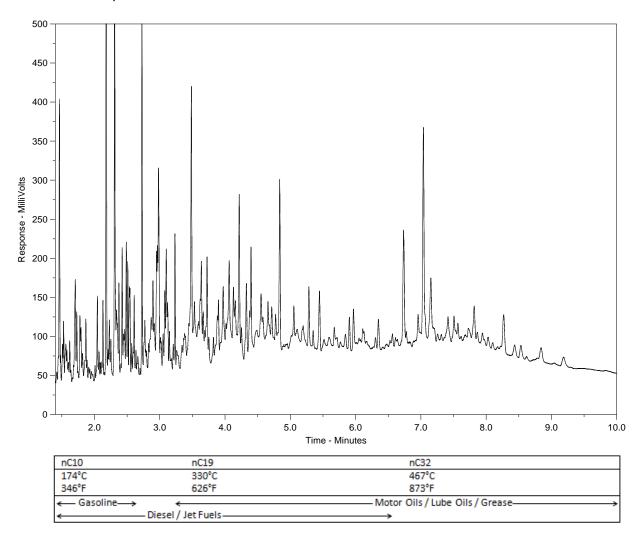
ALS Sample ID: L1209363-2 Client Sample ID: PC-MW12-02


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

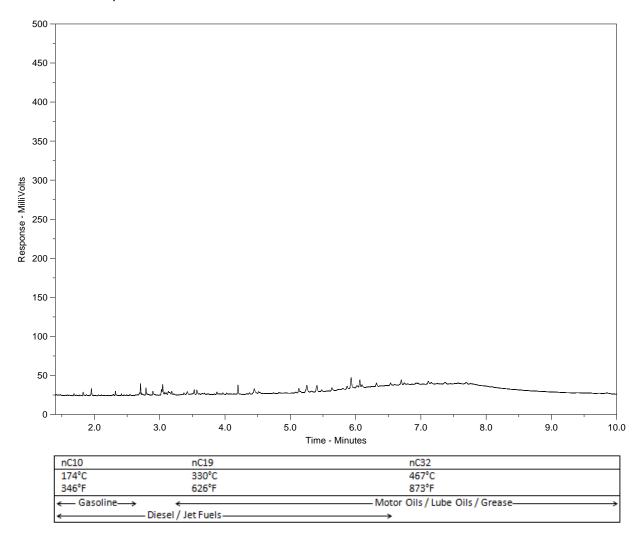
ALS Sample ID: L1209363-3 Client Sample ID: PC-MW12-03


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

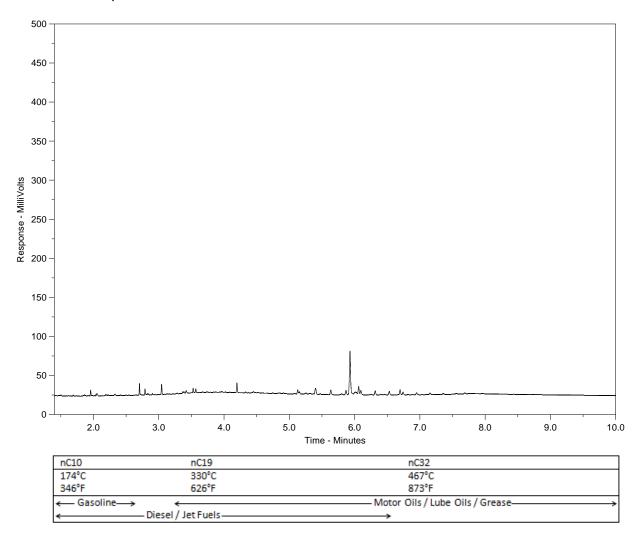
ALS Sample ID: L1209363-4 Client Sample ID: PC SURFACE


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

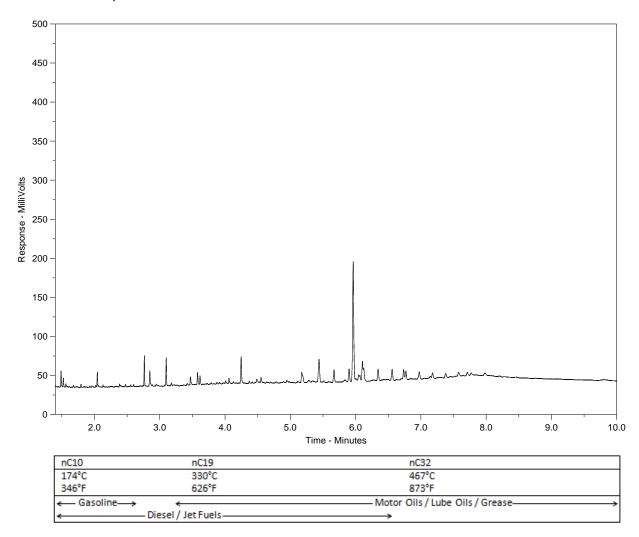
ALS Sample ID: L1209363-5 Client Sample ID: SX-MW12-01


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

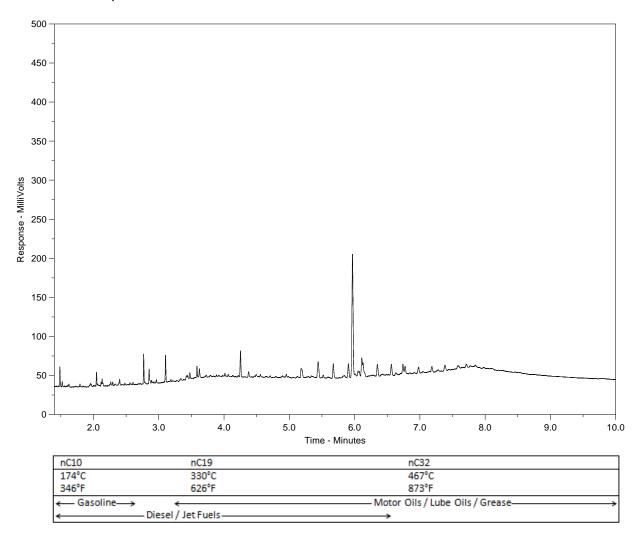
ALS Sample ID: L1209363-6 Client Sample ID: SX-MW12-02


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

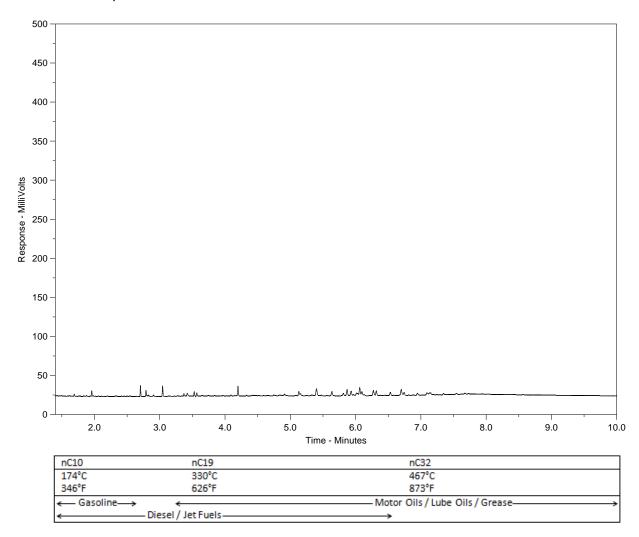
ALS Sample ID: L1209363-7 Client Sample ID: SX-MW12-03


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

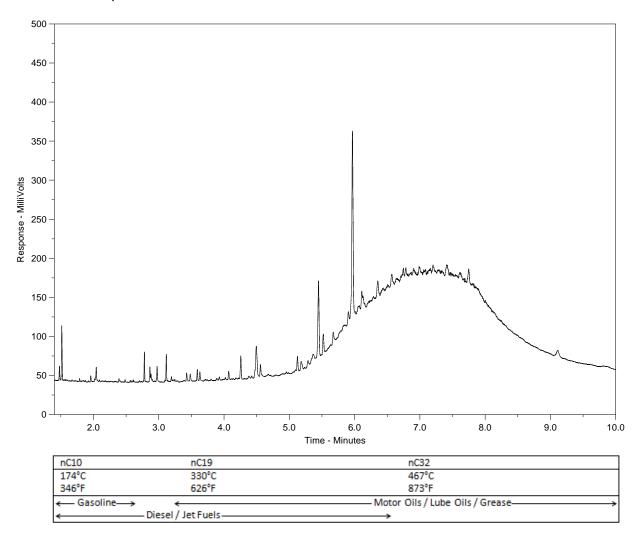
ALS Sample ID: L1209363-8 Client Sample ID: SX-MW12-04


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

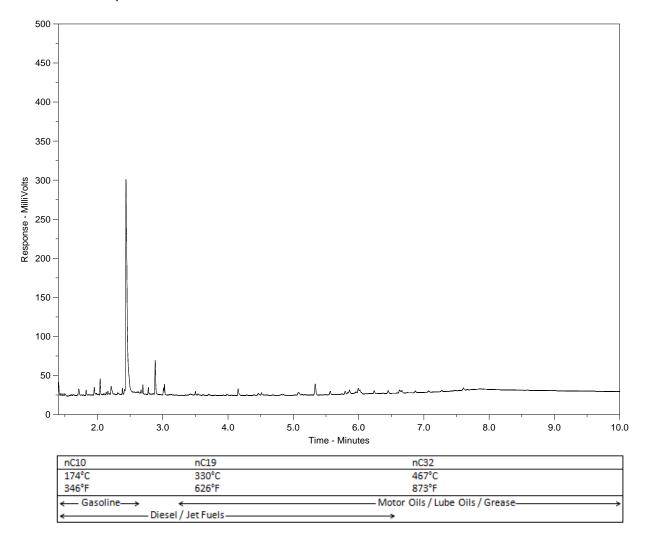
ALS Sample ID: L1209363-9 Client Sample ID: SX SURFACE


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

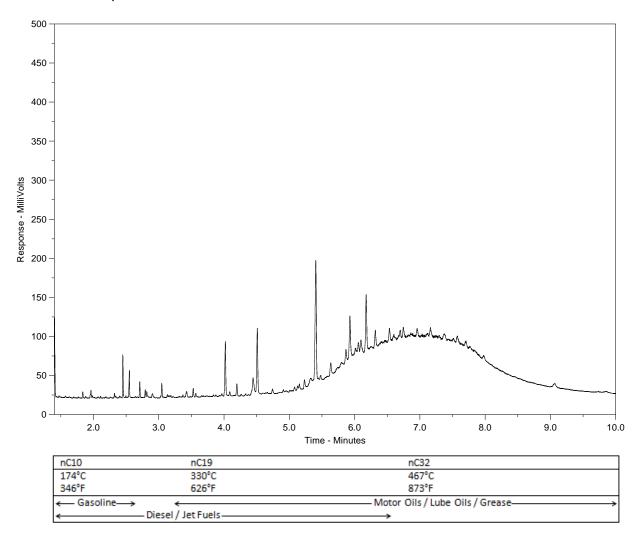
ALS Sample ID: L1209363-10 Client Sample ID: MA-MW12-01


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

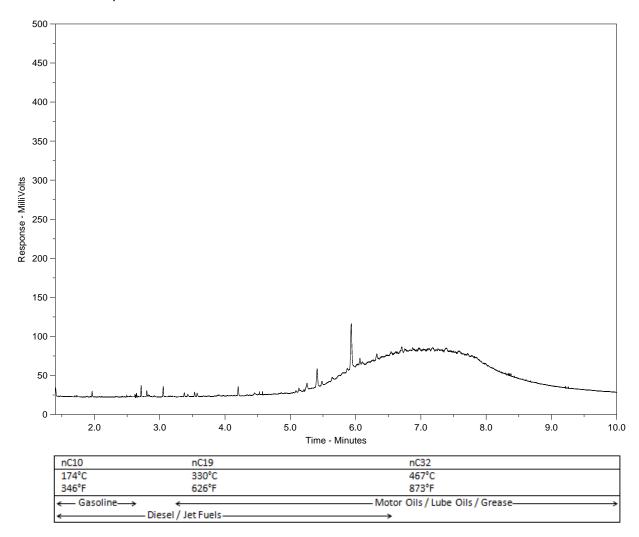
ALS Sample ID: L1209363-11 Client Sample ID: MA-MW12-02


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

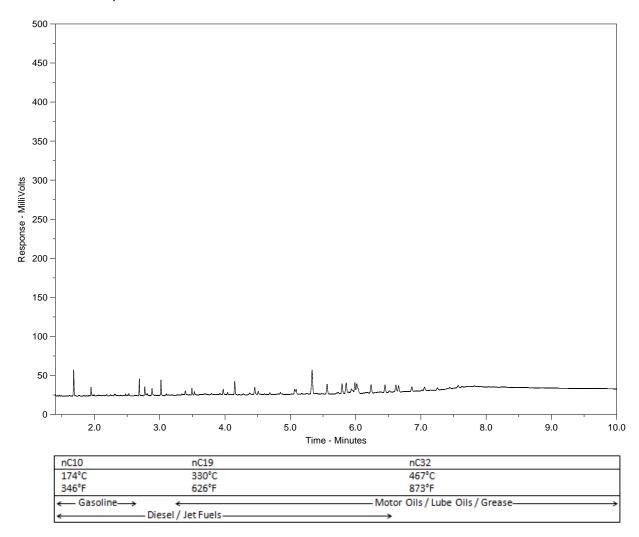
ALS Sample ID: L1209363-12 Client Sample ID: MA-MW12-03


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

ALS Sample ID: L1209363-13 Client Sample ID: MA-MW12-04


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

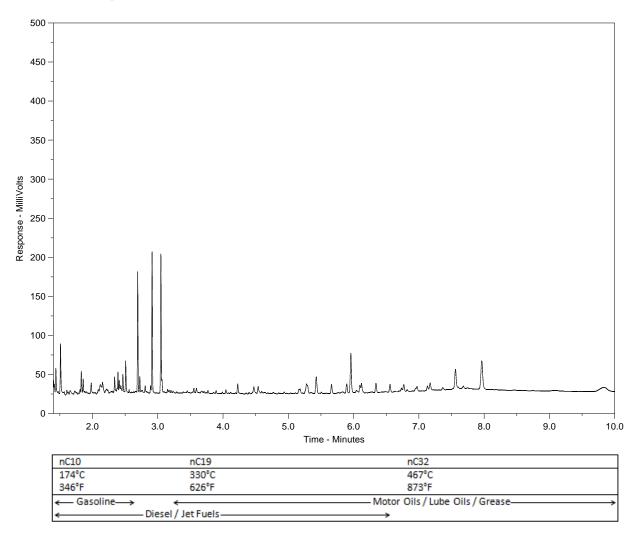
ALS Sample ID: L1209363-14
Client Sample ID: MA SURFACE


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

ALS Sample ID: L1209363-15 Client Sample ID: KE-MW12-01


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

ALS Sample ID: L1209363-16 Client Sample ID: KE-MW12-03


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

ALS Sample ID: L1209363-17 Client Sample ID: KE SURFACE

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

ALS Environmental

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#	
------	--

Page 1 of __2

		Report Format / Distribution				Service Requested (Rush for routine analysis subject to availability)											
Report To	Report Format / Distribution				Regular (Standard Turnaround Times - Business Days)												
	Older Associates			O Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT													
-	Andrea Badger						O Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT										
	203 170 Titanium Way						Same Day or Weekend Emergency - Contact ALS to Confirm TAT										
	Whitehorse, YT Y1A 0G1						Analysis Request Please indicate below Filtered, Preserved or both (F, P, F/P)										
7101107	867-633-6076 Fax: Same as Report ?		Client / Project Information				se indic	ate b	elow F	iltered	, Pres	erved	or both (F, P, F/	(P)		
	Carrie de Alexandre	Job #:	2700											$oxed{oxed}$			
	nvoice with Report?	PO / AFE:				×						İ	ļ				
Company:		LSD:				00X									γs		
Contact: Address:					• •	127(: -			-	-	-		<u>i</u>		
	Fax:	Quote #:	Onote #:						†						ar la		
Phone:	loris Order #	ALS		A	A Bodger	143									ŭ		
	1111 2026	Contact:		Sampler:	A Badger	4s per 11-1436-0072/xxx	1		-				ŧ		Number of Containers		
	use only) LI LO (30) Sample Identification		Date	Time	Sample Type	ber		-		1				1 1			
Sample #	(This description will appear on the report))	(dd-mmm-yy)	(hh:mm)	Sample Type	As					<u> </u>	_ -		\vdash			
#	PC-MW12-01	<u></u>	09-Sep-12	15:40	Groundwater	Х								$\perp \perp$	8		
			10-Sep-12	10:20	Groundwater	Х						ŀ			8		
	PC-MW12-02		10-Sep-12	11:30	Groundwater	x									8		
	PC-MW12-03		13:30	Surface Water	X		_	_	1		_			8			
	PC Surface	13-Sep-12	ļ		 		┿		 -	+			 - 	8			
	SX-MW12-01	12-Sep-12	10:40	Groundwater	X		-		<u> </u>	-		-	╁╾┼	8			
	SX-MW12-02	10-Sep-12	16:30	Groundwater	Х		_ _		_	-			+-+				
	SX-MW12-03		10-Sep-12	17:45	Groundwater	X	-	_		-			\dashv	+	8		
	SX-MW12-04		10-Sep-12	16:30	Groundwater	X			\perp		ļ			1	8		
	SX Surface		12-Sep-12	13:20	Surface Water	X								1	8		
	MA-MW12-01		11-Sep-12	10:45	Groundwater	Х			_ _	_					8		
	MA-MW12-02		11-Sep-12	12:30	Groundwater	X		_			ļ	L .			- 8		
			11-Sep-12	14:15	Groundwater	X			<u> </u>		<u></u>				8		
A TELEVISION OF THE STATE OF TH	Special Instructions / Regulations with water or	r land use (CCI	ME-Freshwater	Aquatic Life/B	C CSR - Commer	cial/A	B Tier	1 - Na	tural,	etc) /	Hazar	dous [<u>jetails</u>				
DC Surface	SX Surface, MA-MW12-02 and MA-MW12-03 samples for	r dissolved met	als are not filtered	d or preserved													
None of the						ie fo	m l FG	IBI Y									
	Failure to complet By the use of this form the user a	e all portions of	of this form may	delay analys the Terms ar	is. Please ini iii u id Conditions as i	provid	ted on	a sep	arate	Excel	tab.						
	By the use of this form the user a Also provided on another Excel tab are the ALS loc	acknowleages ation address	and agrees with es, phone numb	ers and samp	le container / pre	servat	tion / h	Juni	y uinc	COLDIC	101 00	mmon	analys	es.			
		SHIF	PMENT RECEPT	ION (lab use o	only)			SHI	PMEN	TVER	IFICA				<u> </u>		
Dalamas 4	SHIPMENT RELEASE (client use) V Date (dd-mmm-yy) Time (hh-mm) Rece	eived by:	Date:	Time:	Temperature:		ified by	:	Ü	ate:		Time	:		ervation: / No ?		
Released by	· [[[] [] [] [] [] [] [] [] [,	184-Sep-17	110:50	3,200	:[s add S		
Andrea Bad	ger 14-Sep-12 10:30	na_	14-21	10,70	0.00	<u> </u>	· — — ·						GEI	NF 18.01			

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#	
------	--

Page 2 of 2

ALS E	nvironmental		<u> </u>					_						-1.1.	-9-1-276-3			
Report To		Report For	Report Format / Distribution				Service Requested (Rush for routine analysis subject to availability)											
	der Associates					Regular (Standard Turnaround Times - Business Days)												
	Andrea Badger	☑ PDF	☑ PDF ☑ Excel ☐ Digital ☐ Fax					O Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT										
	203 170 Titanium Way	Email 1: a	Email 1: andrea badger@golder.com					Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT										
	Whitehorse, YT Y1A 0G1	Email 2: g	Email 2: gary_hamilton@golder.com					Same Day or Weekend Emergency - Contact ALS to Confirm TAT										
Phone:	867-633-6076 Fax:	m 10 hin beeke@geld				Analysis Request Please indicate below Filtered, Preserved or both (F, P							P F/P)	T^{-}				
	Same as Report? Yes No		Client / Project Information					ate be	IOW FI	Tered	, Pies	- T	T 01 DC	1	1,171,	1		
lardcopy of li	nvoice with Report? Yes No		1 1-1436- 0073/1	200, 2200, 2400	0, 2700				╂	 				-+	_	1		
Company:		PO / AFE:				×			1				ļ					
Contact:		LSD:				Įš			1.				.			SIS		
Address:										4.4	-		٠	ľ		aine		
Phone:	Fax:	Quote #:					ŀ									Number of Containers		
Lab V	/ork Order #	ALS		Sampler:	A Badger	11-1436-0072/xxxx								:		of C		
(lab	use only)	Contact:		S												Ser		
Sample	Sample Identification		Date	Time	Sample Type	ber .							j			<u>E</u>		
#	(This description will appear on the repo	ort)	(dd-mmm-yy)	(hh:mm)		\{\angle}			-	ļ	 			_		+		
	MA-MW12-04		11-Sep-12	15:15	Groundwater	X		_		-	<u> </u>		-		_	8		
	MA Surface	12-Sep-12	18:30	Surface Water	X			┧		 	<u> </u>				8			
	KE-MW12-01			9:25	Groundwater	X		<u> </u>		_	ļ			_+		8		
	KE-MW12-03			9:55	Groundwater	X				<u> </u>						8		
	KE Surface	11-Sep-12	19:15	Surface Water	X				_	ļ					8			
									<u> </u>	_								
										ļ	<u> </u>							
											<u> </u>							
																┷		
The first section of																		
				<u> </u>														
								_	 									
	Special Instructions / Regulations with water of	or land use (CCM	E-Freshwater	Aquatic Life/B	C CSR - Comme	rcial/A	B Tier	- Nat	ural, e	etc)/	Hazar	rdous	Deta	ils				
	Special instructions / Regulations with water to	for diagoland motol	le are not filtere	d or presented														
PC Surface,	SX Surface, MA-MW12-02 and MA-MW12-03 samples f samples for DOC are filtered or preserved																	
Notice of the	Failure to comple	ete all portions of	f this form may	/ delay analysi	s. Please fill in t	his fo	m LEG	IBLY.		t ·	4 a la							
	man of All 1 forms Alice and an	- aaknoudadaa a	nd sarage with	the Terms and	d Conditions as	provid	led on a	a sepa	rate E	:xcei 1 table :	iad. for co	\mm^	n ans	alvses				
l	Also provided on another Excel tab are the ALS lo	ocation addresses	s, phone numb	ers and sampl	e container / pre	servai	uon / ne	numy	mile (lable	IUI CC	TION	(lab	use on	lv)			
	SHIPMENT RELEASE (client use)	SHIPI	SHIPMENT RECEPTION (lab use only)							ENT VERIFICAT			e:		Observa	itions:		
Released b	y: Date (dd-mmm-yy) Time (hh-mm) Rei	ceived by:	Date:	Time:			mou by								Yes / No			
Andres Bod	ger 14-Sep-12 10:30				°C	<u>기</u>									If Yes a			
Andrea Bad	ger 14-366-121 (0.00)		·											GENF	18.01 Fro	ent		

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Ltd. 500 - 4260 Still Creek Drive Burnaby, British Columbia, V5C 6C6 Canada

T: +1 (604) 296 4200

